机器学习研究与开发平台的选择

    目前机器学习可以说是百花齐放阶段,不过如果要学习或者研究机器学习,进而用到生产环境,对平台,开发语言,机器学习库的选择就要费一番脑筋了。这里就我自己的机器学习经验做一个建议,仅供参考。

    首先,对于平台选择的第一个问题是,你是要用于生产环境,也就是具体的产品中,还是仅仅是做研究学习用?

1. 生产环境中机器学习平台的搭建

    如果平台是要用于生产环境的话,接着有一个问题,就是对产品需要分析的数据量的估计,如果数据量很大,那么需要选择一个大数据平台。否则的话只需要一个单机版的平台就可以了。

1.1 生产环境中机器学习大数据平台的搭建

    生产环境里面大数据平台,目前最主流的就是Spark平台,加上辅助的分布式数据处理容器,比如YARN,或者Mesos.如果需要实时的收集在线数据,那么就加上Kafka。简言之,一个通用的大数据处理平台就是集成Spark + YARN(Mesos) + Kafka. 我现在做的产品项目都是基于Spark + YARN+ Kafka的,目前来看,这个平台选择基本上是主流的方向。

    当然,有人会说,这么多开源软件,一起集成起来好麻烦,大坑肯定不少,有没有一个通用的平台,可以包括类似Spark + YARN+ Kafka的大数据平台功能呢?目前据我所知,做的比较好的有CDAP(http://cdap.io)。它对Spark, YARN, Kafka还有一些主流的开源数据处理软件进行了集成,开发者只需要在它上面封装的一层API上做二次开发就可以了。这应该是一个不错的点子,不过目前还没有看到商用的成功案例,所以我们在构架选型的时候就没有考虑CDAP。

    因此,围绕Spark + YARN+ Kafka的大数据平台还是首选。由于Spark MLlib的机器学习算法并不丰富好用,因此如果你的产品中需要一些MLlib中没有的算法,就需要自己去找开源实现了。

1.2 生产环境中机器学习单机数据平台的搭建

    生产环境里面如果数据量不大,大数据平台就显得有点over design了,此时我们有更多的选择。首选,仍然是Spark平台,不过我们不需要分布式的容器YARN和分布式数据分发的路由Kafka了。为什么首选还是Spark呢?因为我们要考虑扩展,现在数据量不大,不代表以后数据量不大。这也是我参与的一些小型数据分析项目也是选择Spark的原因。当然我觉得还有一些原因是Spark同时支持了Python, Java, Scala和R。这降低了很多程序员的参与门槛。我参与的Spark项目中,开发语言主要是Java和Scala。Python没有选择是因为一些速度的原因和系统其它部分都是用Java写的。

    第二个选择是以scikit-learn为主的一系列python工具,包括 numpy, scipy, pandas, MatplotLib等等。特点是类库丰富,尤其是scikit-learn的机器学习库,可以说是十八般武器,样样都有。另外就是由于可以交互式的编写程序,方便快速开发原型。我参与的有两个项目在可行性分析阶段,都是用scikit-learn来做原型和给客户做demo。

    因此,生产环境中机器学习单机数据平台, Spark是做产品首选,而scikit-learn家族适合做快速的原型开发验证。

2. 研究环境中机器学习平台的搭建

    如果只是做研究,那么选择就很多了,主流的有三种。

    第一种是基于Spark MLlib来学习。好处是学到的东西用到生产环境可以无缝切换,但是坏处也很明显,Spark东西很多,在自己的单机上跑很吃内存,比较慢,而且MLlib的类库并不丰富,很多算法需要自己再去找类库。根据周围同事的反馈,比较吃力,因此基于Spark MLlib来学习机器学习,我个人觉得不是一个好的选择。

    第二种是基于scikit-learn为主的一系列python工具来学习,包括上面提到的numpy, scipy, pandas, MatplotLib等等。好处是类库多,API强大,可以让你专注于数据的分析,例子也多,学习起来不难。当然也有缺点,就是这一大堆的python库,要熟练的用起来需要一段时间。 个人比较推荐这种方法,周围同事来说,用scikit-learn学习交流也是主流。

    第三种是基于R的平台来做机器学习(不包括Spark R),主要平台是R studio。由于R是一门比较老的语言,因此他的数据处理和机器学习的API比较丰富,尤其是对于之前做数据分析师的人来说更是熟悉不过。但是R是一门相对封闭的语言,社区远远没有Python的活跃,而且对于程序员来说, R的那种语法让人难受。几年前,一般会认为R的机器学习比Python的好,但是现在Python已经将R远远甩在了后面。因此,除非你之前已经很熟悉R语言,否则完全不推荐用R来研究机器学习,BTW,这里没有歧视R的意思。

    总之,如果你想研究学习机器学习,并且没有特殊的R背景,scikit-learn是你的首选。当然,有人会说,我喜欢自己去一点点的实现机器学习的算法,不喜欢直接调用类库,这样不行吗? 当然,这样肯定是非常不错的,并且对加深各个算法理解很有好处。只是这样比较的花时间,如果你和我一样时间不太多的话,还是直接调用API来研究数据比较直接。

(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com) 

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏华章科技

一文读懂大数据:Hadoop,大数据技术及相关应用

你想了解大数据,却对生涩的术语毫不知情?你想了解大数据的市场和应用,却又没有好的案例和解说?别担心,这本来自Wikibon社区的小书想要帮你。

11220
来自专栏PPV课数据科学社区

【热点】大数据分析的八大趋势

Intuit公司的数据工程副总裁Bill Loconzolo,双脚踏进了数据湖。.Smarter Remarketer的首席数据科学家Dean Abbott直接...

32620
来自专栏灯塔大数据

荐读|大数据时代:十大最热门的大数据技术

随着 大数据分析 市场快速渗透到各行各业,哪些大数据技术是刚需?哪些技术有极大的潜在价值?根据弗雷斯特研究公司发布的指数,这里给出最热的十个大数据技术。 ? ...

30070
来自专栏华章科技

1个月只敲1天代码,拿着全额薪资,我错了吗?

每周工作2小时,相当于1个月只上1天班,拿全薪。公司从来没有表示他们对我的表现不满意。他们从雇用我中得到了他们想要的,而我还可以在家陪陪儿子。不告诉老板,有错吗...

8820
来自专栏钱塘大数据

【盘点】云计算的8项核心技术

1、虚拟化技术 虚拟化是云计算最重要的核心技术之一,它为云计算服务提供基础架构层面的支撑,是ICT服务快速走向云计算的最主要驱动力。可以说,没有虚拟化技术也就没...

55360
来自专栏ThoughtWorks

常用的几种大数据架构剖析 | 洞见

数据分析工作虽然隐藏在业务系统背后,但是具有非常重要的作用,数据分析的结果对决策、业务发展有着举足轻重的作用。随着大数据技术的发展,数据挖掘、数据探索等专有名词...

41860
来自专栏云计算D1net

Hadoop崛起对数据仓库有多大的影响

在过去三年,Hadoop生态系统已经大范围扩展,很多主要IT供应商都推出了Hadoop连接器,以增强Hadoop的顶层架构或是供应商自己使用的Hadoop发行版...

38490
来自专栏一名叫大蕉的程序员

靠谱的数据开发从业指南No.82

有小伙伴让我聊聊数据开发的职业规划和从业指南,因为数据开发从业人员的知识量实在是太太太大了,今天恰好这个机会好好聊聊。

22060
来自专栏钱塘大数据

收藏 | 大数据应用及其解决方案(完整版)

大数据,IT行业的又一次技术变革,大数据的浪潮汹涌而至,对国家治理、企业决策和个人生活都在产生深远的影响,并将成为云计算、物联网之后信息技术产业领域又一重大创新...

46810
来自专栏知晓程序

职场必备小程序,随时随地扩充你的人脉!

去出席一场商务活动,如果忘记带名片,或是名片带少了,是一件非常尴尬的事。接了一大叠别人的名片,要是不及时整理,这些人脉也无从用起。

10630

扫码关注云+社区

领取腾讯云代金券