谷歌MnasNet:实现移动端机器学习模型的自动化

编译:chux

出品:ATYUN订阅号

在智能手机领域,检测对象,分类图像和识别面部的应用程序并不是什么新鲜事;它们已经被Google Lens和Snapchat等应用推广,但普遍性无法替代质量,而大多数使用卷积神经网络的基础机器学习模型,往往会受到缓慢或不准确的影响。这是硬件约束限制的计算权衡。

尽管如此,谷歌的研究人员开发了一种AI模型选择方法,可以达到记录的速度和精度。

在一篇新论文“MnasNet: Platform-Aware Neural Architecture Search for Mobile”和博客文章中,该团队描述了一个自动化系统MnasNet,该系统从候选列表中识别理想的神经架构,并结合强化学习来考虑移动速度限制。它在特定设备上执行各种模型,在本研究中的例子为谷歌的Pixel,测量它们的真实性能,自动选择最好的一组。

“通过这种方式,我们可以直接衡量在现实世界中实现的目标,”研究人员在博客文章中写道,“鉴于每种类型的移动设备都有自己的软件和硬件特性,可能需要不同的架构才能做到最好在准确性和速度之间进行权衡。”

该系统由三部分组成:(1)循环神经网络驱动的控制器,用于学习和采样模型的架构;(2)训练器,用于构建和训练模型;(3)TensorFlow Lite驱动的推理引擎测量模型的速度。

该团队测试了ImageNet上的首选模型,由斯坦福和普林斯顿维护的图像数据库,以及上下文中的公共对象(COCO)对象识别数据集。结果显示,这些模型比最先进的移动模型MobileNetV2快1.5倍,比神经网络搜索系统NASNet快2.4倍。与此同时,在COCO上,Google的模型比MobileNet实现了“更高的准确性和更高的速度”,与SSD300模型相比,计算成本降低了35倍,这是研究人员的基准。

团队表示,“我们很高兴看到我们的自动化方法可以在多个复杂的移动视觉任务上实现最先进的性能,将来,我们计划在搜索空间中加入更多操作和优化,并将其应用于更多移动视觉任务,如语义分割。”

边缘和离线(与云托管相对)AI获得了大量的研究,特别是在移动领域。在6月份的2018年全球开发者大会期间,Apple推出了改进版的ML Core,它是iOS上的设备上机器学习框架。在谷歌I / O 2018上,谷歌宣布了ML Kit,这是一个软件开发套件,其中包含的工具可以更轻松地在应用程序中部署自定义TensorFlow Lite模型。

论文:arxiv.org/abs/1807.11626

原文发布于微信公众号 - ATYUN订阅号(atyun_com)

原文发表时间:2018-08-08

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

业界 | IBM发布新型分布式深度学习系统:结合软硬件实现当前最优性能

选自IBM 机器之心编译 近日,IBM 发布了一种结合软件和硬件的新型分布式系统 PowerAI DDL,该系统不仅在 Imagenet 22K 任务上实现了当...

3315
来自专栏灯塔大数据

每周学点大数据 | No.59协同过滤模型(下)

NO.58 协同过滤模型(下) Mr. 王:是的,前面的那种加权平均的形式,我们是可以直接利用的,其中的量稍作修改即可: ? 此时式中,Sij 表示的是i 和...

3455
来自专栏机器之心

深度学习应用实践指南:七大阶段助你创造最佳新应用

选自arXiv 作者:Leslie N. Smith 机器之心编译 参与:Jane W、黄小天 近日来自美国海军研究室人工智能应用研究中心的 Leslie N...

2708
来自专栏ATYUN订阅号

照相时眨眼了怎么办?Facebook研究者创建AI系统,可以生成“假眼”

你可能在照相时遇到以下的情况:闪光灯闪烁,你控制不住眨了眼,照片上也许就显示出你闭眼的样子。Facebook的研究人员创建了一个人工智能系统,该系统可以用计算机...

1087
来自专栏AI科技大本营的专栏

AI技术讲座精选:强化学习入门以及代码实现

介绍 目前,对于全球的科学家而言,“如何去学习一种新技能”已经成为最基本的研究课题之一。解决这个问题的意愿显而易见——如果能够解决这个问题,那么人类就有望做到...

28811
来自专栏数据派THU

独家 | 从零开始用python搭建推荐引擎(附代码)

当今社会的每个人都面临着各种各样的选择。例如,如果我漫无目的想找一本书读,那么关于我如何搜索就会出现很多可能。这样一来,我可能会浪费很多时间在网上浏览,并且在各...

3874
来自专栏最新技术

数据包络分析教程

数据包络分析(Data Envelopment Analysis,也称DEA)是一种用于进行前沿分析的非参数方法。它使用线性规划来估计多个决策单元的效率,它广泛...

5006
来自专栏ATYUN订阅号

惊喜!神经元比我们想象的复杂的多

? 深度学习或人工神经网络(ANN)能够模拟生物神经元的观点,是个很大的误解。ANN充其量能模仿一个1957年的单个神经元模型的卡通版本。任何声称深度学习的人...

3634
来自专栏新智元

百度发布全深度学习文本到语音转化系统 Deep Voice,比 WaveNet 快400倍

【新智元导读】 百度最新发布文本到语音转化系统Deep Voice。百度称,这是一个全部由深度神经网络构建的系统,在文本到语音的转化速度上比 WaveNet 快...

2837
来自专栏新智元

AI距离匹敌人类大脑还有多远?人工神经网络和生物神经网络最详细对比

【新智元导读】 人工神经网络性能的好坏取决于哪些要素?取得了哪些进展,最新发展趋势是什么?通过与生物神经网络的对比,本文带来对人工神经网络的深度介绍。 能够学...

3426

扫码关注云+社区