《数学之美》读后感:看数学之美,悟技术之道

一、关于此书

  记得几年前看完了《浪潮之巅》之后,便知道了吴军老师还有另外一本非常出名的著作《数学之美》,但是一直没有列入计划阅读。直到2016年我看完了《硅谷之谜》以及《智能时代》之后,便自己上网买了一本第二版的《数学之美》。正如李开复博士所说:“在我认识的顶尖研究员和工程师里,吴军博士是极少数具有强大叙事能力和对科技、信息领域的发展变化有很深的纵向洞察力,并能进行有效归纳总结的人之一。”,正是因为在前面几本书中我看到了吴军老师强大的“讲故事”的能力,他能用通俗易懂,深入浅出的语言将技术原理讲清楚,这就十分腻害了,在《数学之美》中他也再次展示了这一点。

  最近除了阅读《数学之美》,还订阅了吴军老师的《硅谷来信》,每天在早上洗漱时听一封信,在睡觉前也会听一封信,借吴军老师之眼去看世界,也可以读到一流的科学家/工程师对于各种事件非常独特的见解,以丰富自己的眼界。在此,感谢之前Sobey公司的我的前老板刘总的推荐,我也将《硅谷来信》推荐给你们。

二、看数学之美

Part 1 简单即是美的方法

  这本书一共29章,主要介绍了这些数学方法:统计方法、统计语言模型、中文信息处理、隐含马尔科夫模型、布尔代数、图论、网页排名技术、信息论、动态规划、余弦定理、矩阵运算、信息指纹、密码学、搜索技术、数学模型、最大熵模型、拼音输入法、贝叶斯网络、句法分析、维特比算法、各个击破算法等。

  例如,在统计语言模型一章中,我们会发现原来使用简单的数学模型就可以解决复杂的语音识别、机器翻译等问题,但是使用很复杂的文法规则和人工智能却做不到,而这些仅仅需要我们了解概率论和统计学的知识就可以应用到工程中。(当然,最先提出将统计学方法应用到计算机应用工程问题的先驱们是真的值得我们为其鼓掌的!)此外,简单的布尔代数就是支撑搜索引擎索引的数学基础,一个漂亮的pagerank矩阵乘法迭代加上一个TF-IDF公式,就可以大程度地改善搜索结果的质量,无一不体现出简单即是美的特点,而数学模型刚好符合这个要求。

  又如,在信息的度量和作用一章,我们再次回顾了信息熵的重要性,这也是吴军老师一直在重复提及的信息论(吴军老师喜欢站在信息论的高度看问题,而不只是看到片面的表象)。一个事物内部会存在随机性,也就是不确定性,而从外部消除这个不确定唯一的办法是引入信息,而需要引入的信息量取决于这个不确定的大小。就像我们在追一个女生的时候,很多时候往往不是一拍即合,一见钟情的,只有互相表达的信息(即引入信息)足够了,才会消除各自对于对方的顾虑。等到引入的信息量消除了处在两个人之间的屏障,那么我们就可以跟对方告白宣告在一起了。

  本书中介绍的所有的这些方法在吴军老师的笔下都只为了突出一句话:数学的精彩之处就在于简单的模型可以干大事

PS:对于书中提到的大部分的数学模型都有其开源的代码实现,而我们这些工程人员只需要使用这些开源工具到自己的实际项目中即可,么么哒!

Part 2 传道授业的专家们 

  这本书除了在高层讲述数学方法在计算机应用(主要是语音识别等互联网应用领域)的基本原理(吴军老师称其为“道”)外,还穿插了一些传道的专家们的故事,包括:贾里尼克、辛格、马库斯以及维特比等。  

  比如,吴军老师的博士生导师贾里尼克教授。贾里尼克教授少年坎坷,也并非开始就投身到自然语言方面的研究,关键是他的思想和他的道。贾里克尼教授治学严谨、用心对待自己的学生,对于学生的教导,教授告诉你最多的是“什么方法不好”。这让我回想起当年看李开复博士的《世界因你而不同》一书中听到的一句话(李开复博士的导师罗迪教授给李开复讲的一句话)“我不赞同你,但我支持你”,于是也就有了李开复在语音识别领域的一鸣惊人的成就。贾里尼克的一生富于传奇色彩,先在哈佛大学、康奈尔大学教书,接着在IBM任职,之后又去约翰-霍普金斯大学教书。他的贡献主要有如下几个:第一,提出了统计语言识别的框架结构;第二,共同提出了BCJR算法;第三,领导建立了世界著名的CLSP实验室。

  又如,辛格博士现任主管Google搜索的高级副总裁,并被学术界公认是当今最权威的网络搜索专家。他奉行简单的哲学,并一直坚持寻找简单有效的解决方案。令我印象最深刻的就在于,吴军博士在设计分类器时,依照吴军力求完美的态度,应该还会花很多时间去尽善尽美,但是被辛格博士止住了,“在工程上简单实用的方法最好”。这种做事情的哲学其实非常值得我们借鉴,即先帮助用户解决80%的问题,再慢慢解决剩下的20%的问题,是在工业界成功地秘诀之一。许多失败并不是因为人不优秀,而是做事情的方法不对,一开始追求大而全的解决方案,之后长时间不能完成,最后不了了之。在我们的日常工作中也是一样,在项目开发设计中,很多人不管业务场景和技术要求,一上来就这种架构那种模式,往往不考虑到底这种设计是不是大牛拉小车,最后虽然解决了问题但是交付时间被延后,既让用户不满意也让部门不满意。

三、悟技术之道

  吴军老师在《数学之美》中提到:“这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余”。回到我们日常的开发工作中,作为IT工程师,程序员,要跟上技术的大潮流,需要学习的技术太多太多,如果一味地只为去追技术的脚步,那么我们也会很累很累,而且可能会是花了80%的时间却只得到了20%的效果,更别谈期望值最大化了,或许根本就达不到你期望值的60%。相反,比如cnblogs(博客园)在招聘工程师一直提到的“3大原理,2个协议,1种结构”(计算机原理、操作系统原理、编译原理、TCP/IP协议、HTTP协议、数据结构)却是没有怎么变化的(甚至是短时间不会变化的),而这些东西恰好是在这个浮躁的社会,我们这些所谓的计算机系的毕业生,所谓的科班毕业生所缺乏的(因为大部分人都没有在大学期间将这些东西真正地学好,而只是为了所谓的几个学分去图书馆奋战一两个周末而已)。站在高处向下看,也许我们一直看不到底,但是站在底处却是可以看见底的,这也是我为什么在毕业之后还要去重新温故操作系统原理和数据结构等科目的原因。

  愿我们能够在底层站的更稳后,能够以一种更加全局的视角去看待上层建筑,感悟技术之道!

作者:周旭龙

出处:http://edisonchou.cnblogs.com

本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CDA数据分析师

你的数据会说话吗?数据报告类PPT演讲要点

编译 | secretplanet 来源 | blogs.hbr.org 为一个受过专业培训的数据工作者,我是早先加入贝尔实验室网络性能组的人员之一。此后的...

1926
来自专栏大数据文摘

社交大佬们的数据‘大’在哪里?

40611
来自专栏算法channel

你为何而来?一个可能与你有关的改变

后面我越来越觉得每天写点东西,记下来,睡觉前还能看看,真的很不错。同时,在写下来时,以前的知识盲区变得清晰起来,实在没分析清楚的,各种查资料后,基本也都能解决。...

1075
来自专栏钱塘大数据

【大咖说】吴军:数据为王和机器智能的时代

在清华大学的这次讲座,吴军博士的演讲主题聚焦在大数据和机器智能领域。以下是吴军博士演讲内容(略有删节): 今天的主题是“机器智能和2%的世界”, 这是今天讲座...

4026
来自专栏新智元

【V直播】三专家解读波士顿动力Atlas惊艳后空翻7大技术难点

【新智元导读】上周五,波士顿动力发布机器人Atlas的最新视频。这个会后空翻的机器人在网络上引起热议,新智元微信公众号上的文章阅读量也超过了10万+。昨天,在新...

3669
来自专栏新智元

【研究院】CHI 2016大会丨人机交互进入手感操作时代

【新智元导读】新智元开通“研究院”专栏,提供各大研究院最新人工智能技术和产业信息,助你掌握业界动态,了解顶级机构研发实例。第一期专栏推荐三星电子中国研究院人机交...

2963
来自专栏机器人网

亚马逊花百万美元打造AI聊天比赛,它收获了什么?

第一位对话者是一个五十多岁的肌肉男,剃着光头,身着黑色V领毛衣。他走进一间会议室,坐在低矮的蓝色扶手椅上,前面是一排摄像机和工作室照明灯。他被灯光照得明亮,而房...

3008
来自专栏大数据文摘

人类历史上最有影响力的5张信息图

1503
来自专栏互联网数据官iCDO

“大数据"这词不火了 是不是因为没当年说的那么好

本文转载自网易新闻 网易科技讯 10月19日消息,国外媒体Slate刊文指出,“大数据(Big Data)”一词已经变得没有以往那么红火了,为什么会这样呢?“大...

3164
来自专栏PPV课数据科学社区

【工具】如何教数据说话?数据报告类PPT演讲要点

为一个受过专业培训的数据工作者,我是早先加入贝尔实验室网络性能组的人员之一。此后的一两年左右,我开始了数据汇报。我的第一次大型数据汇报是在AT&T(美国电话电报...

3606

扫码关注云+社区

领取腾讯云代金券