前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >从构造函数看线程安全

从构造函数看线程安全

作者头像
半吊子全栈工匠
发布2018-08-22 10:03:06
1.7K0
发布2018-08-22 10:03:06
举报
文章被收录于专栏:喔家ArchiSelf

线程是编程中常用而且强大的手段,在使用过程中,我们经常面对的就是线程安全问题了。对于Java中常见的数据结构而言,一般的,ArrayList是非线程安全的,Vector是线程安全的;HashMap是非线程安全的,HashTable是线程安全的;StringBuilder是非线程安全的,StringBuffer是线程安全的。

然而,判断代码是否线程安全,不能够想当然,例如Java 中的构造函数是否是线程安全的呢?

自己从第一感觉来看,构造函数应该是线程安全的,如果一个对象没有初始化完成,怎么可能存在竞争呢? 甚至在Java 的语言规范中也谈到,没有必要将constructor 置为synchronized,因为它在构建过程中是锁定的,其他线程是不可能调用还没有实例化好的对象的。

但是,当我读过了Bruce Eckel 的博客文章,原来构造函数也并不是线程安全的,本文中的示例代码和解释全部来自Bruce Eckel 的那篇文章。

演示的过程从 定义一个接口开始:

代码语言:javascript
复制
// HasID.java

public interface HasID {
  int getID();
}

有各种方法可以实现这个接口,先看看静态变量方式的实现:

代码语言:javascript
复制
// StaticIDField.java

public class StaticIDField implements HasID {
  private static int counter = 0;
  private int id = counter++;
  public int getID() { return id; }
}

这是一个简单而无害的类,再构造一个用于并行调用的测试类:

代码语言:javascript
复制
// IDChecker.java
import java.util.*;
import java.util.function.*;
import java.util.stream.*;
import java.util.concurrent.*;
import com.google.common.collect.Sets;

public class IDChecker {
  public static int SIZE = 100000;
  static class MakeObjects
  implements Supplier<List<Integer>> {
    private Supplier<HasID> gen;
    public MakeObjects(Supplier<HasID> gen) {
      this.gen = gen;
    }
    @Override
    public List<Integer> get() {
      return
        Stream.generate(gen)
          .limit(SIZE)
          .map(HasID::getID)
          .collect(Collectors.toList());
    }
  }
  public static void test(Supplier<HasID> gen) {
    CompletableFuture<List<Integer>>
      groupA = CompletableFuture
        .supplyAsync(new MakeObjects(gen)),
      groupB = CompletableFuture
        .supplyAsync(new MakeObjects(gen));
    groupA.thenAcceptBoth(groupB, (a, b) -> {
      System.out.println(
        Sets.intersection(
          Sets.newHashSet(a),
          Sets.newHashSet(b)).size());
    }).join();
  }
}

其中 MakeObjects 是一个 Supplier 通过get()方法产生一个 List. 这个 List 从 每个HasID 对象中得到一个ID。test() 方法创建了两个并行的CompletableFutures 来运行MakeObjects suppliers, 然后就每个结果使用Guava库的Sets.intersection() 来找出两个List中有多少个共有的ID。现在,测试一下多个并发任务调用这个StaticIDField类的结果:

代码语言:javascript
复制
// TestStaticIDField.java

public class TestStaticIDField {
  public static void main(String[] args) {
    IDChecker.test(StaticIDField::new);
  }
}
/* Output:
47643
*/

有大量的重复值,显然 static int 不是线程安全的,需要用AtomicInteger 尝试一下:

代码语言:javascript
复制
// GuardedIDField.java
import java.util.concurrent.atomic.*;

public class GuardedIDField implements HasID {
  private static AtomicInteger counter =
    new AtomicInteger();
  private int id = counter.getAndAdd(1);
  public int getID() { return id; }
  public static void main(String[] args) {
    IDChecker.test(GuardedIDField::new);
  }
}
/* Output:
0
*/

通过构造函数的参数来共享状态同样是对线程安全敏感的:

代码语言:javascript
复制
// SharedConstructorArgument.java
import java.util.concurrent.atomic.*;

interface SharedArg {
  int get();
}

class Unsafe implements SharedArg {
  private int i = 0;
  public int get() { return i++; }
}

class Safe implements SharedArg {
  private static AtomicInteger counter =
    new AtomicInteger();
  public int get() {
    return counter.getAndAdd(1);
  }
}

class SharedUser implements HasID {
  private final int id;
  public SharedUser(SharedArg sa) {
    id = sa.get();
  }
  @Override
  public int getID() { return id; }
}

public class SharedConstructorArgument {
  public static void main(String[] args) {
    Unsafe unsafe = new Unsafe();
    IDChecker.test(() -> new SharedUser(unsafe));
    Safe safe = new Safe();
    IDChecker.test(() -> new SharedUser(safe));
  }
}
/* Output:
47747
0
*/

这里,SharedUser的构造函数共享了相同的参数,SharedUser 理所当然的使用了这些参数,构造函数引起了冲突,而自身并不知道失控了。

Java 中并不支持对构造函数synchronized,但实际上可以实现一个synchronized 块的,例如:

代码语言:javascript
复制
// SynchronizedConstructor.java
import java.util.concurrent.atomic.*;

class SyncConstructor implements HasID {
  private final int id;
  private static Object constructorLock = new Object();
  public SyncConstructor(SharedArg sa) {
    synchronized(constructorLock) {
      id = sa.get();
    }
  }
  @Override
  public int getID() { return id; }
}

public class SynchronizedConstructor {
  public static void main(String[] args) {
    Unsafe unsafe = new Unsafe();
    IDChecker.test(() -> new SyncConstructor(unsafe));
  }
}
/* Output:
0
*/

这样,就是线程安全的了。另一种方式是避免构造函数的集成,通过一个静态工厂的方法来生成对象:

代码语言:javascript
复制
// SynchronizedFactory.java
import java.util.concurrent.atomic.*;

class SyncFactory implements HasID {
  private final int id;
  private SyncFactory(SharedArg sa) {
    id = sa.get();
  }
  @Override
  public int getID() { return id; }
  public static synchronized
  SyncFactory factory(SharedArg sa) {
    return new SyncFactory(sa);
  }
}

public class SynchronizedFactory {
  public static void main(String[] args) {
    Unsafe unsafe = new Unsafe();
    IDChecker.test(() ->
      SyncFactory.factory(unsafe));
  }
}
/* Output:
0
*/

这样通过工厂方法来实现加锁就可以安全了。

这样的结果对于老码农来说,并不意外,因为线程安全取决于那三竞争条件的成立:

  1. 两个处理共享变量
  2. 至少一个处理会对变量进行修改
  3. 一个处理未完成前另一个处理会介入进来

示例程序中主要是用锁来实现的,这一点上,erlang实际上具有着先天的优势。纸上得来终觉浅,终于开始在自己的虚拟机上开始安装Java 8 了,否则示例程序都跑不通了。对完成线程安全而言————

规避一,没有共享内存,就不存在竞态条件了,例如利用独立进程和actor模型。

规避二,比如C++中的const,scala中的val,Java中的immutable

规避三, 不介入,使用协调模式的线程如coroutine等,也可以使用表示不便介入的标识——锁、mutex、semaphore,实际上是使用中的状态令牌。

最后,简单粗暴地说, share nothing 基本上可以从根本上解决线程安全吧。

参考阅读:

http://bruceeckel.github.io/

https://www.ibm.com/developerworks/cn/java/j-jtp09263/

http://blog.csdn.net/wirelesscom/article/details/44150053

http://blog.csdn.net/wirelesscom/article/details/42550241

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-04-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 喔家ArchiSelf 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档