前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >高通 sensor 从native到HAL

高通 sensor 从native到HAL

作者头像
233333
发布2018-08-23 16:38:38
2.6K0
发布2018-08-23 16:38:38
举报

app注册传感器监听

Android Sensor Framework 的整体架构如下图所示:

image
image

前几篇sensor相关的文章介绍了sensor的hal的知识,以press_sensor实时显示气压坐标来分析,app层数据获取的过程,其实实现数据监控非常简单,主要分为下面三个步骤:

  • 获取Sensor服务:getSystemService;
  • 获取具体Sensor对象:getDefaultSensor;
  • 注册数据监听器:registerListener;

SensorService启动

开机后,system server启动时,就会初始化sensor service,也就是说,开机后她一直都在后台运行着,客户端部分,直接connect就行了。至于怎么connect,这一切都被封装到SensorManager里了。

SensorService服务启动后,在随后的第一次被强引用时,其onFirstRef会被调用,紧接着,它会获取我们的SensorDevice实例:

void SensorService::onFirstRef() {
    ALOGD("nuSensorService starting...");
    SensorDevice& dev(SensorDevice::getInstance());

    sHmacGlobalKeyIsValid = initializeHmacKey();

    if (dev.initCheck() == NO_ERROR) {
        sensor_t const* list;
        ssize_t count = dev.getSensorList(&list);
        if (count > 0) {

附上这部分的流程

SensorDevice作为Sensor架构中native的最后一个文件,与Hal层进行通信,故而在SensorDevice的构造方法中,我们就可以看到著名的hw_get_module和sensors_open_1方法了:

SensorDevice::SensorDevice()
    :  mSensorDevice(0),
       mSensorModule(0) {
    status_t err = hw_get_module(SENSORS_HARDWARE_MODULE_ID,
            (hw_module_t const**)&mSensorModule);

    ALOGE_IF(err, "couldn't load %s module (%s)",
            SENSORS_HARDWARE_MODULE_ID, strerror(-err));

    if (mSensorModule) {
        err = sensors_open_1(&mSensorModule->common, &mSensorDevice);

        ALOGE_IF(err, "couldn't open device for module %s (%s)",
                SENSORS_HARDWARE_MODULE_ID, strerror(-err));

        if (mSensorDevice) {
            if (mSensorDevice->common.version == SENSORS_DEVICE_API_VERSION_1_1 ||
                mSensorDevice->common.version == SENSORS_DEVICE_API_VERSION_1_2) {
                ALOGE(">>>> WARNING <<< Upgrade sensor HAL to version 1_3");
            }

            sensor_t const* list;
            ssize_t count = mSensorModule->get_sensors_list(mSensorModule, &list);
            mActivationCount.setCapacity(count);
            Info model;
            for (size_t i=0 ; i<size_t(count) ; i++) {
                mActivationCount.add(list[i].handle, model);
                mSensorDevice->activate(
                        reinterpret_cast<struct sensors_poll_device_t *>(mSensorDevice),
                        list[i].handle, 0);
            }
        }
    }
}

其中SENSORS_HARDWARE_MODULE_ID是在hardware/sensors.h中定义的module名字:

/**
 * The id of this module
 */
#define SENSORS_HARDWARE_MODULE_ID "sensors"

而mSensorModule就是我们的sensors_module_t结构体,这些都是在hal层sensors.h中定义的:

/**
 * Every hardware module must have a data structure named HAL_MODULE_INFO_SYM
 * and the fields of this data structure must begin with hw_module_t
 * followed by module specific information.
 */
struct sensors_module_t {
    struct hw_module_t common;

    /**
     * Enumerate all available sensors. The list is returned in "list".
     * @return number of sensors in the list
     */
    int (*get_sensors_list)(struct sensors_module_t* module,
            struct sensor_t const** list);

    /**
     *  Place the module in a specific mode. The following modes are defined
     *
     *  0 - Normal operation. Default state of the module.
     *  1 - Loopback mode. Data is injected for the supported
     *      sensors by the sensor service in this mode.
     * @return 0 on success
     *         -EINVAL if requested mode is not supported
     *         -EPERM if operation is not allowed
     */
    int (*set_operation_mode)(unsigned int mode);
};

可以看到sensors_module_t结构体扩展了hw_module_t,它里面额外提供了get_sensor_list方法来获取系统支持的sensor列表以及一个模式设置方法。

接下来,我们跟进hw_get_module方法,看看它到底做了什么?

hw_get_module

该函数具体实现在hardware/libhardware/hardware.c中

int hw_get_module(const char *id, const struct hw_module_t **module)
{
    return hw_get_module_by_class(id, NULL, module);
}
int hw_get_module_by_class(const char *class_id, const char *inst,
                           const struct hw_module_t **module)
{
    int i = 0;
    char prop[PATH_MAX] = {0};
    char path[PATH_MAX] = {0};
    char name[PATH_MAX] = {0};
    char prop_name[PATH_MAX] = {0};
 
 
    if (inst)
        snprintf(name, PATH_MAX, "%s.%s", class_id, inst);
    else
        strlcpy(name, class_id, PATH_MAX);
 
    /*
     * Here we rely on the fact that calling dlopen multiple times on
     * the same .so will simply increment a refcount (and not load
     * a new copy of the library).
     * We also assume that dlopen() is thread-safe.
     */
 
    /* First try a property specific to the class and possibly instance */
    snprintf(prop_name, sizeof(prop_name), "ro.hardware.%s", name);
    if (property_get(prop_name, prop, NULL) > 0) {
        if (hw_module_exists(path, sizeof(path), name, prop) == 0) {
            goto found;
        }
    }
 
    /* Loop through the configuration variants looking for a module */
    for (i=0 ; i<HAL_VARIANT_KEYS_COUNT; i++) {
        if (property_get(variant_keys[i], prop, NULL) == 0) {
            continue;
        }
        if (hw_module_exists(path, sizeof(path), name, prop) == 0) {
            goto found;
        }
    }
 
    /* Nothing found, try the default */
    if (hw_module_exists(path, sizeof(path), name, "default") == 0) {
        goto found;
    }
 
    return -ENOENT;
 
found:
    /* load the module, if this fails, we're doomed, and we should not try
     * to load a different variant. */
    return load(class_id, path, module);
}

我们主要看hw_get_module_by_class,这里传入的参数分别是“sensors”,null,以及我们的mSensorModule结构体。

首先将字符串拷贝给name:

strlcpy(name, class_id, PATH_MAX);

接着拼接prop_name为ro.hardware.name,即prop_name=ro.hardware.sensors

通过property_get方法并没有得到这个值的定义(因为在系统中并没有对其定义),所以接下来会进入下面的循环:

for (i=0 ; i<HAL_VARIANT_KEYS_COUNT; i++) {
        if (property_get(variant_keys[i], prop, NULL) == 0) {
            continue;
        }
        if (hw_module_exists(path, sizeof(path), name, prop) == 0) {
            goto found;
        }
    }
/**
 * There are a set of variant filename for modules. The form of the filename
 * is "<MODULE_ID>.variant.so" so for the led module the Dream variants 
 * of base "ro.product.board", "ro.board.platform" and "ro.arch" would be:
 *
 * led.trout.so
 * led.msm7k.so
 * led.ARMV6.so
 * led.default.so
 */
 
static const char *variant_keys[] = {
    "ro.hardware",  /* This goes first so that it can pick up a different
                       file on the emulator. */
    "ro.product.board",
    "ro.board.platform",
    "ro.arch"
};

根据上面的解析我门也可以看到,将会分别查找sensors.variant.sosensors.product.sosensors.platform.so,以及sensors.default.so,最终我们会在/system/lib/hw/路径下找到sensors.msm8909.so,然后将其通过load方法加载进内存中运行。由此也可知,我分析的是高通8952平台。

小细节:当我们实现了自己的HAL层module,并且写了一个应用程序测试module是否正常工作,那么在编译的时候,下面的参数应该要这样写:

LOCAL_MODULE := moduleName.default

或者

LOCAL_MODULE := moduleName.$(TARGET_BOARD_PLATFORM)

由于上面源码的原因,如果module名字对应不到,你的这个模块将不会被正常的load进去,因而也就无法正常工作了。

接着我们分析load的实现。

static int load(const char *id,
        const char *path,
        const struct hw_module_t **pHmi)
{
    int status = -EINVAL;
    void *handle = NULL;
    struct hw_module_t *hmi = NULL;
 
    /*
     * load the symbols resolving undefined symbols before
     * dlopen returns. Since RTLD_GLOBAL is not or'd in with
     * RTLD_NOW the external symbols will not be global
     */
    handle = dlopen(path, RTLD_NOW);
    if (handle == NULL) {
        char const *err_str = dlerror();
        ALOGE("load: module=%s\n%s", path, err_str?err_str:"unknown");
        status = -EINVAL;
        goto done;
    }
 
    /* Get the address of the struct hal_module_info. */
    const char *sym = HAL_MODULE_INFO_SYM_AS_STR;
    hmi = (struct hw_module_t *)dlsym(handle, sym);
    if (hmi == NULL) {
        ALOGE("load: couldn't find symbol %s", sym);
        status = -EINVAL;
        goto done;
    }
 
    /* Check that the id matches */
    if (strcmp(id, hmi->id) != 0) {
        ALOGE("load: id=%s != hmi->id=%s", id, hmi->id);
        status = -EINVAL;
        goto done;
    }
 
    hmi->dso = handle;
 
    /* success */
    status = 0;
 
    done:
    if (status != 0) {
        hmi = NULL;
        if (handle != NULL) {
            dlclose(handle);
            handle = NULL;
        }
    } else {
        ALOGV("loaded HAL id=%s path=%s hmi=%p handle=%p",
                id, path, *pHmi, handle);
    }
 
    *pHmi = hmi;
 
    return status;
}
  1. 首先通过dlopen打开sensors.xxx.so模块,获得其句柄handle
  2. 调用dlsym去获取结构体hw_module_t结构体的地址,注意这里传入的字符串为HAL_MODULE_INFO_SYM_AS_STR,定义在hardware.h头文件中
/**
 * Name of the hal_module_info
 */
#define HAL_MODULE_INFO_SYM         HMI
 
/**
 * Name of the hal_module_info as a string
 */
#define HAL_MODULE_INFO_SYM_AS_STR  "HMI"

这里为什么要去取名字为HMI的地址,我猜想它应该是HAL模块的入口了。

ELF文件格式:

ELF = Executable and Linkable Format,可执行连接格式,是UNIX系统实验室(USL)作为应用程序二进制接口(Application Binary Interface,ABI)而开发和发布的,扩展名为elf。一个ELF头在文件的开始,保存了路线图(road map),描述了该文件的组织情况。sections保存着object 文件的信息,从连接角度看:包括指令,数据,符号表,重定位信息等等。通过file命令我们可知sensors.xx.so是一个ELF文件格式

tiny.hui@build-server:~$ file sensors.msm8909.so
sensors.msm8909.so: ELF 32-bit LSB shared object, ARM, version 1 (SYSV), dynamically linked (uses shared libs), BuildID[md5/uuid]=0x25812b01ab4700281b41f61327075611, not stripped

因此,通过linux的readelf命令我们可以查看该文件的内部布局及符号表等信息。

tiny.hui@build-server:~$ readelf -s sensors.msm8909.so
 
Symbol table '.dynsym' contains 157 entries:
   Num:    Value  Size Type    Bind   Vis      Ndx Name
     0: 00000000     0 NOTYPE  LOCAL  DEFAULT  UND
     1: 00000000     0 FUNC    GLOBAL DEFAULT  UND __cxa_finalize@LIBC (2)
     2: 00000000     0 FUNC    GLOBAL DEFAULT  UND __cxa_atexit@LIBC (2)
     3: 00000000     0 FUNC    GLOBAL DEFAULT  UND __register_atfork@LIBC (2)
     4: 00000000     0 FUNC    GLOBAL DEFAULT  UND pthread_mutex_lock@LIBC (2)
        …………………………// 省略无关信息
    179: 0000c179   120 FUNC    GLOBAL DEFAULT   13 _ZN19NativeSensorManager1
   180: 0000bd21   392 FUNC    GLOBAL DEFAULT   13 _ZN19NativeSensorManager2
   181: 0000a45b   114 FUNC    GLOBAL DEFAULT   13 _ZN24InputEventCircularRe
   182: 000064d9   148 FUNC    GLOBAL DEFAULT   13 _ZN22sensors_poll_context
   183: 0000d889     6 FUNC    GLOBAL DEFAULT   13 _ZN11sensors_XMLC1Ev
   184: 0000663d   156 FUNC    GLOBAL DEFAULT   13 _ZN10SensorBaseC2EPKcS1_P
   185: 000086d5   248 FUNC    GLOBAL DEFAULT   13 _ZN11AccelSensorC1Ev
   186: 000088dd   248 FUNC    GLOBAL DEFAULT   13 _ZN11AccelSensorC2EP13Sen
   187: 00014220     4 OBJECT  GLOBAL DEFAULT   23 _ZN7android9SingletonI11s
   188: 0000a53b    46 FUNC    GLOBAL DEFAULT   13 _ZN18CalibrationManager10
   189: 00007775    56 FUNC    GLOBAL DEFAULT   13 _ZN15ProximitySensorD1Ev
   190: 00014008   136 OBJECT  GLOBAL DEFAULT   22 HMI
   191: 0000721d    26 FUNC    GLOBAL DEFAULT   13 _ZNK11AccelSensor16hasPen
   192: 0000d475    16 FUNC    WEAK   DEFAULT   13 _ZNK7android12SortedVecto
   193: 00006dd9   264 FUNC    GLOBAL DEFAULT   13 _ZN11LightSensorC2EPc
   194: 00006181    48 FUNC    GLOBAL DEFAULT   13 _ZN22sensors_poll_context
   195: 0000d4fd    48 FUNC    GLOBAL DEFAULT   13 _ZN13VirtualSensorD1Ev
   196: 0000aa15    80 FUNC    GLOBAL DEFAULT   13 _ZN18CalibrationManagerD2
   197: 000087cd   272 FUNC    GLOBAL DEFAULT   13 _ZN11AccelSensorC1EPc

由符号表可知,HMI的地址为00014008,拿到函数地址,当然就可以执行对应的代码了。

QualComm Sensor HAL

因此我们接着看sensor_hal层,高通的Sensor实现了自己的HAL,其源码在hardware\qcom\sensors路径下,通过Android.mk我们也可以确定他确实是我们前面load方法打开的动态链接库,其编译后会生成sensor.msm8909.so

ifneq ($(filter msm8960 msm8610 msm8916 msm8909,$(TARGET_BOARD_PLATFORM)),)
# Exclude SSC targets
ifneq ($(TARGET_USES_SSC),true)
# Disable temporarily for compilling error
ifneq ($(BUILD_TINY_ANDROID),true)
LOCAL_PATH := $(call my-dir)

# HAL module implemenation stored in
include $(CLEAR_VARS)

ifeq ($(USE_SENSOR_MULTI_HAL),true)
  LOCAL_MODULE := sensors.native
else
  ifneq ($(filter msm8610,$(TARGET_BOARD_PLATFORM)),)
    LOCAL_MODULE := sensors.$(TARGET_BOARD_PLATFORM)
    LOCAL_CFLAGS := -DTARGET_8610
  else
    ifneq ($(filter msm8916 msm8909,$(TARGET_BOARD_PLATFORM)),)
      LOCAL_MODULE := sensors.$(TARGET_BOARD_PLATFORM)
    else
      LOCAL_MODULE := sensors.msm8960
    endif
  endif

  ifdef TARGET_2ND_ARCH
    LOCAL_MODULE_RELATIVE_PATH := hw
  else
    LOCAL_MODULE_PATH := $(TARGET_OUT_SHARED_LIBRARIES)/hw
  endif
endif

LOCAL_MODULE_TAGS := optional

LOCAL_CFLAGS += -DLOG_TAG=\"Sensors\"
ifeq ($(call is-board-platform,msm8960),true)
  LOCAL_CFLAGS += -DTARGET_8930
endif

LOCAL_C_INCLUDES := $(TARGET_OUT_INTERMEDIATES)/KERNEL_OBJ/usr/include
LOCAL_ADDITIONAL_DEPENDENCIES := $(TARGET_OUT_INTERMEDIATES)/KERNEL_OBJ/usr

# Export calibration library needed dependency headers
LOCAL_COPY_HEADERS_TO := sensors/inc
LOCAL_COPY_HEADERS :=   \
                CalibrationModule.h \
                sensors_extension.h \
                sensors.h

LOCAL_SRC_FILES :=      \
                sensors.cpp                     \
                SensorBase.cpp                  \
                LightSensor.cpp                 \
                ProximitySensor.cpp             \
                CompassSensor.cpp               \
                Accelerometer.cpp                               \
                Gyroscope.cpp                           \
                Bmp180.cpp                              \
                InputEventReader.cpp \
                CalibrationManager.cpp \
                NativeSensorManager.cpp \
                VirtualSensor.cpp       \
                sensors_XML.cpp \
                SignificantMotion.cpp

LOCAL_C_INCLUDES += external/libxml2/include    \

ifeq ($(call is-platform-sdk-version-at-least,20),true)
    LOCAL_C_INCLUDES += external/icu/icu4c/source/common
else
    LOCAL_C_INCLUDES += external/icu4c/common
endif

LOCAL_SHARED_LIBRARIES := liblog libcutils libdl libxml2 libutils

include $(BUILD_SHARED_LIBRARY)

include $(CLEAR_VARS)

LOCAL_MODULE := libcalmodule_common
LOCAL_SRC_FILES := \
                   algo/common/common_wrapper.c \
                   algo/common/compass/AKFS_AOC.c \
                   algo/common/compass/AKFS_Device.c \
                   algo/common/compass/AKFS_Direction.c \
                   algo/common/compass/AKFS_VNorm.c

LOCAL_SHARED_LIBRARIES := liblog libcutils
LOCAL_MODULE_TAGS := optional

ifdef TARGET_2ND_ARCH
LOCAL_MODULE_PATH_32 := $(TARGET_OUT_VENDOR)/lib
LOCAL_MODULE_PATH_64 := $(TARGET_OUT_VENDOR)/lib64
else
LOCAL_MODULE_PATH := $(TARGET_OUT_VENDOR_SHARED_LIBRARIES)
endif

include $(BUILD_SHARED_LIBRARY)

include $(CLEAR_VARS)

LOCAL_MODULE := calmodule.cfg
LOCAL_MODULE_TAGS := optional
LOCAL_MODULE_CLASS := ETC
LOCAL_MODULE_PATH := $(TARGET_OUT_VENDOR_ETC)
LOCAL_SRC_FILES := calmodule.cfg

include $(BUILD_PREBUILT)

endif #BUILD_TINY_ANDROID
endif #TARGET_USES_SSC
endif #TARGET_BOARD_PLATFORM

那么HMI的入口到底定义在这里的那个文件中呢?

功夫不负有心人,在sensors.cpp中,我们终于找到了HMI的入口,即下面的结构体:

static struct hw_module_methods_t sensors_module_methods = {
    .open = sensors_open
};
 
struct sensors_module_t HAL_MODULE_INFO_SYM = {
    .common = {
        .tag = HARDWARE_MODULE_TAG,
        .module_api_version = (uint16_t)SENSORS_DEVICE_API_VERSION_1_3,
        .hal_api_version = HARDWARE_HAL_API_VERSION,
        .id = SENSORS_HARDWARE_MODULE_ID,
        .name = "QTI Sensors Module",
        .author = "Qualcomm Technologies, Inc.",
        .methods = &sensors_module_methods,
        .dso = NULL,
        .reserved = {0},
    },
    .get_sensors_list = sensors_get_sensors_list,
    .set_operation_mode = sensors_set_operation_mode
};

HAL_MODULE_INFO_SYM即上文提到的HMI变量,恭喜各位,这里我们就开启了QualComm Sensor HAL的大门。

最后这个hw_module_t的结构体句柄会返回给我们的SensorDevice的构造函数里:

SensorDevice::SensorDevice()
    :  mSensorDevice(0),
       mSensorModule(0)
{
    status_t err = hw_get_module(SENSORS_HARDWARE_MODULE_ID,
            (hw_module_t const**)&mSensorModule);
 
    ALOGE_IF(err, "couldn't load %s module (%s)",
            SENSORS_HARDWARE_MODULE_ID, strerror(-err));
 
    if (mSensorModule) {
        err = sensors_open_1(&mSensorModule->common, &mSensorDevice);

接着,通过sensors_open_1方法将module->common传入,打开我们的sensor驱动。

// hardware/libhardware/include/hardware/sensors.h
static inline int sensors_open_1(const struct hw_module_t* module,
        sensors_poll_device_1_t** device) {
    return module->methods->open(module,
            SENSORS_HARDWARE_POLL, (struct hw_device_t**)device);
}
 
static inline int sensors_close_1(sensors_poll_device_1_t* device) {
    return device->common.close(&device->common);
}

回过头去看看HMI的结构体定义,其中module->common->open被赋值为sensors_module_methods,其只有一个open方法,因此,module->methods->open最终会调用sensors_open方法来打开驱动程序。

到这里native到hal层的逻辑其实已经基本上分析完了。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018-08-13 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • app注册传感器监听
  • SensorService启动
  • hw_get_module
  • QualComm Sensor HAL
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档