前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >如何做Spark 版本兼容

如何做Spark 版本兼容

作者头像
用户2936994
发布2018-08-27 10:51:10
9320
发布2018-08-27 10:51:10
举报
文章被收录于专栏:祝威廉祝威廉祝威廉

我们知道Spark2.0 ,Spark 1.6还有Spark 1.5 三者之间版本是不兼容的,尤其是一些内部API变化比较大。如果你的系统使用了不少底层的API,那么这篇文章或许对你有帮助。我们介绍的兼容相关一些技巧,主要包括动态编译以及反射等方式,也用到了Scala的一些语言特性。

案例

在Spark 1.6 时,大部分机器学习相关的类使用的向量还是

org.apache.spark.mllib.linalg.Vector

而到2.0后,已经基本都变更成

org.apache.spark.ml.linalg.Vector

同理对应的Vectors object 也是。这就造成了一个比较大的困难,比如下面的代码就很难做到兼容了,切换Spark就无法通过编译:

//定义一个函数,将一个字符串转化为Vector
val t = udf { (features: String) =>

      if (!features.contains(":")) {
        val v = features.split(",|\\s+").map(_.toDouble)
        Vectors.dense(v)
      } else {
        val v = features.split(",|\\s+").map(_.split(":")).map(f => (f(0).toInt, f(1).toDouble))
        Vectors.sparse(vectorSize, v)
      }

    }

//Dataframe转化为只有label 和 features列。
training.select(
      col("label") cast (org.apache.spark.sql.types.DoubleType),
      t(col("features")) as "features"
)

无论你怎么写,都没办法在Spark 1.6 和 Spark 2.0 同时表现正常,总是会报错的,因为 Vector,Vectors等类的包名都发生了变化。

在Spark中,你可以通过 org.apache.spark.SPARK_VERSION 获取Spark的版本。 我们定义一个类:

object SparkCompatibility {  
def sparkVersion = {     org.apache.spark.SPARK_VERSION  }

动态编译

Scala 是可以很方便的动态源码的,对于而且代码也很简单,大体如下:

object ScalaSourceCodeCompiler {


  def compileCode(code: String): Any = {
    import scala.reflect.runtime.universe._
    val cm = runtimeMirror(Utils.getContextOrSparkClassLoader)
    val toolbox = cm.mkToolBox()
    val tree = toolbox.parse(code)
    val ref = toolbox.compile(tree)()
    ref
  }

这种效果和Spark Shell里是类似的,ref 是里面的一个返回值。正常情况,你可以写两份代码,一份Spark 1.6. 一份Spark 2.0 ,然后在运行时决定编译那份代码。然而这种方式有一个缺点,尤其是在Spark中很难避免,如果compileCode 返回的值ref是需要被序列化到Executor的,则反序列化会导致问题,因为里面生成的一些匿名类在Executor中并不存在。除此之外,这种方法是实现兼容最有效的办法。

原先我考虑过使用Spark 内部的CodeGen代码,大致如下:

    def compileCode3[T](codeBody: String, references: Array[Any]): T = {
      val code = CodeFormatter.stripOverlappingComments(
        new CodeAndComment(codeBody, Map()))
  
      val c = CodeGenerator.compile(code)
      c.generate(references).asInstanceOf[T]
    }

不幸的是,这个API本身也在变化,譬如CodeAndComment就是只有2.0才有的。

分离项目方式

将API有变化的部分,独立出来。比如前面我们提到的,对于Vector相关的API,1.6 和2.0 是不同的,那么我们可以剥离出两个工程,每个工程适配对应的版本,然后发布jar包,在Maven中根据Profile机制,根据Spark版本引入不同的适配包。这种方式相对来说比较繁琐。不过目前StreamingPro采用这个方案同时兼容spark 2.2.0/1.6.0

反射的方法

下面是我用来解决Vector 包名变化的代码:

def vectorizeByReflect(vectorSize: Int) = {

    val clzzName =
      if (org.apache.spark.SPARK_VERSION.startsWith("2")) {
        "org.apache.spark.ml.linalg.Vectors"
      } else {
        "org.apache.spark.mllib.linalg.Vectors"
      }

    val reslutClzzName = if (org.apache.spark.SPARK_VERSION.startsWith("2")) {
      "org.apache.spark.ml.linalg.Vector"
    } else {
      "org.apache.spark.mllib.linalg.Vector"
    }
    def dense(v: Array[Double]) = {
      Class.forName(clzzName).getMethod("dense", classOf[Array[Double]]).invoke(null, v)
    }

    def sparse(vectorSize: Int, v: Array[(Int, Double)]) = {
      val method = Class.forName(clzzName).getMethod("sparse", classOf[Int], classOf[Seq[(Int, Double)]])
      val vs: Integer = vectorSize
      method.invoke(null, vs, v.toSeq)
    }

    val t = functions2.udf(reslutClzzName, (features: String) => {
      if (!features.contains(":")) {
        val v = features.split(",|\\s+").map(_.toDouble)
        dense(v)
      } else {
        val v = features.split(",|\\s+").map(_.split(":")).map(f => (f(0).toInt, f(1).toDouble))
        sparse(vectorSize, v)
      }
    })

    t
  }

我们根据不同版本,动态加载对应的类,然后通过反射来调用方法,从而避免编译时错误。然而通过反射,就无法使用类似的代码了:

val t = udf {
 .....
}

因为 udf 函数要求能够推导出输入和返回值是什么。而如果通过反射,因为返回值我们无法确定(有可能是org.apache.spark.ml.linalg.Vector,也有可能是org.apache.spark.mllib.linalg.Vector),这个时候就无法通过编译了。于是我们改写了udf的是实现,然而这个实现也遇到了挫折,因为里面用到比如UserDefinedFunction类,已经在不同的包里面了,我们依然通过放射的方案解决:

def udf[RT: TypeTag, A1: TypeTag](className: String, f: Function1[A1, RT]): Any = {

    if (SparkCompatibility.sparkVersion.startsWith("2")) {
      val inputTypes = Try(ScalaReflection.schemaFor(typeTag[A1]).dataType :: Nil).toOption
      val dufReg = Class.forName("org.apache.spark.sql.types.UDTRegistration").
        getMethod("getUDTFor", classOf[String]).invoke(null, className).asInstanceOf[Option[Class[_]]]
      val udt = dufReg.get.newInstance().asInstanceOf[UserDefinedType[_]]
      Class.forName("org.apache.spark.sql.expressions.UserDefinedFunction").
        getConstructor(classOf[AnyRef], classOf[DataType], classOf[Option[Seq[DataType]]]).
        newInstance(f, Schema(udt, nullable = true).dataType, inputTypes)
    } else {
      val inputTypes = Try(ScalaReflection.schemaFor(typeTag[A1]).dataType :: Nil).toOption.get.toSeq
      val udt = org.apache.spark.util.Utils.classForName(className)
        .getAnnotation(classOf[SQLUserDefinedType]).udt().newInstance().asInstanceOf[UserDefinedType[_]]
      Class.forName("org.apache.spark.sql.UserDefinedFunction").
        getConstructor(classOf[AnyRef], classOf[DataType], classOf[Seq[DataType]]).
        newInstance(f, Schema(udt, nullable = true).dataType, inputTypes)

    }
  }

很丑陋,对不对。这里还有一个问题,虽然udf返回的都是UserDefinedFunction对象,然而他们也是版本不兼容的,也就是我们无法让编译器确定返回的值是什么。我们使用了另外一个Scala语法的技巧,如下:

val t = functions2.udf(reslutClzzName, (features: String) => {
      if (!features.contains(":")) {
        val v = features.split(",|\\s+").map(_.toDouble)
        dense(v)
      } else {
        val v = features.split(",|\\s+").map(_.split(":")).map(f => (f(0).toInt, f(1).toDouble))
        sparse(vectorSize, v)
      }
    }).asInstanceOf[{def apply(exprs: Column*): Column}]

核心在最后一行,我们声称返回的对象满足这个签名:

{def apply(exprs: Column*): Column}

这个时候,就可以直接使用了:

training.select(  
col("label") cast (org.apache.spark.sql.types.DoubleType),  
t(col("features")) as "features")

总结

Spark 1.6 和2.0 内部API变化很大,然而对普通用户的API兼容性还是不错的。做版本兼容似乎并不是一件容易的事情。所以当使用StreamingPro做机器学习相关工作时,我只兼容了Spark 1.6,2.0,而抛弃了 1.5版本。但是对于普通的ETL以及流式计算,三个版本都是支持的。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2016.08.05 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 案例
  • 动态编译
  • 分离项目方式
  • 反射的方法
  • 总结
相关产品与服务
流计算 Oceanus
流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的企业级实时大数据分析平台,具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档