分布式事务的CAP理论 与BASE理论

CAP理论

  一个经典的分布式系统理论。CAP理论告诉我们:一个分布式系统不可能同时满足一致性(C:Consistency)、可用性(A:Availability)和分区容错性(P:Partition tolerance)这三个基本需求,最多只能同时满足其中两项

1、一致性

  在分布式环境下,一致性是指数据在多个副本之间能否保持一致的特性。在一致性的需求下,当一个系统在数据一致的状态下执行更新操作后,应该保证系统的数据仍然处于一直的状态。

  对于一个将数据副本分布在不同分布式节点上的系统来说,如果对第一个节点的数据进 行了更新操作并且更新成功后,却没有使得第二个节点上的数据得到相应的更新,于是在对第二个节点的数据进行读取操作时,获取的依然是老数据(或称为脏数 据),这就是典型的分布式数据不一致的情况。在分布式系统中,如果能够做到针对一个数据项的更新操作执行成功后,所有的用户都可以读取到其最新的值,那么 这样的系统就被认为具有强一致性

2、可用性

  可用性是指系统提供的服务必须一直处于可用的状态,对于用户的每一个操作请求总是能够在有限的时间内返回结果。这里的重点是"有限时间内"和"返回结果"。

  "有限时间内"是指,对于用户的一个操作请求,系统必须能够在指定的时间内返回对 应的处理结果,如果超过了这个时间范围,那么系统就被认为是不可用的。另外,"有限的时间内"是指系统设计之初就设计好的运行指标,通常不同系统之间有很 大的不同,无论如何,对于用户请求,系统必须存在一个合理的响应时间,否则用户便会对系统感到失望。

  "返回结果"是可用性的另一个非常重要的指标,它要求系统在完成对用户请求的处理后,返回一个正常的响应结果。正常的响应结果通常能够明确地反映出队请求的处理结果,即成功或失败,而不是一个让用户感到困惑的返回结果。

3、分区容错性

  分区容错性约束了一个分布式系统具有如下特性:分布式系统在遇到任何网络分区故障的时候,仍然需要能够保证对外提供满足一致性和可用性的服务,除非是整个网络环境都发生了故障

  网络分区是指在分布式系统中,不同的节点分布在不同的子网络(机房或异地网络) 中,由于一些特殊的原因导致这些子网络出现网络不连通的状况,但各个子网络的内部网络是正常的,从而导致整个系统的网络环境被切分成了若干个孤立的区域。 需要注意的是,组成一个分布式系统的每个节点的加入与退出都可以看作是一个特殊的网络分区。

  既然一个分布式系统无法同时满足一致性、可用性、分区容错性三个特点,所以我们就需要抛弃一样:

用一张表格说明一下:

选    择

说    明

CA

放弃分区容错性,加强一致性和可用性,其实就是传统的单机数据库的选择

AP

放弃一致性(这里说的一致性是强一致性),追求分区容错性和可用性,这是很多分布式系统设计时的选择,例如很多NoSQL系统就是如此

CP

放弃可用性,追求一致性和分区容错性,基本不会选择,网络问题会直接让整个系统不可用

  需要明确的一点是,对于一个分布式系统而言,分区容错性是一个最基本的要求。因为 既然是一个分布式系统,那么分布式系统中的组件必然需要被部署到不同的节点,否则也就无所谓分布式系统了,因此必然出现子网络。而对于分布式系统而言,网 络问题又是一个必定会出现的异常情况,因此分区容错性也就成为了一个分布式系统必然需要面对和解决的问题。因此系统架构师往往需要把精力花在如何根据业务 特点在C(一致性)和A(可用性)之间寻求平衡。

BASE理论

  BASE是Basically Available(基本可用)、Soft state(软状态)和Eventually consistent(最终一致性)三个短语的缩写。BASE理论是对CAP中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的总结, 是基于CAP定理逐步演化而来的。BASE理论的核心思想是:即使无法做到强一致性,但每个应用都可以根据自身业务特点,采用适当的方式来使系统达到最终一致性。接下来看一下BASE中的三要素:

1、基本可用

  基本可用是指分布式系统在出现不可预知故障的时候,允许损失部分可用性----注意,这绝不等价于系统不可用。比如:

    (1)响应时间上的损失。正常情况下,一个在线搜索引擎需要在0.5秒之内返回给用户相应的查询结果,但由于出现故障,查询结果的响应时间增加了1~2秒

    (2)系统功能上的损失:正常情况下,在一个电子商务网站上进行购物的时候,消费者几乎能够顺利完成每一笔订单,但是在一些节日大促购物高峰的时候,由于消费者的购物行为激增,为了保护购物系统的稳定性,部分消费者可能会被引导到一个降级页面

2、软状态

  软状态指允许系统中的数据存在中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时

3、最终一致性

  最终一致性强调的是所有的数据副本,在经过一段时间的同步之后,最终都能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。

  总的来说,BASE理论面向的是大型高可用可扩展的分布式系统,和传统的事物ACID特性是相反的,它完全不同于ACID的强一致性模型,而是通过牺牲强一致性来获得可用性,并允许数据在一段时间内是不一致的,但最终达到一致状态。但同时,在实际的分布式场景中,不同业务单元和组件对数据一致性的要求是不同的,因此在具体的分布式系统架构设计过程中,ACID特性和BASE理论往往又会结合在一起。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏嵌入式程序猿

嵌入式工程师必须涨的姿势:云端访问

随着物联网,大数据,云端等热门技术的发展和带动越来越多的嵌入式开发产品需要加入新的功能,对嵌入式开发工程师的要求也越来越高,不懂点都不好意思混下去O(∩_∩...

38612
来自专栏AI星球

"一言蔽之系列"--简说SQL与NoSQL那些事

文章结构: 1、关系型数据库:ACID理论 2、非关型系数据库:分布式存储理论、CAP理论、BASE理论、优缺点、常用NoSQL数据库 3、Python链...

1113
来自专栏.NET技术

关于分布式事务、两阶段提交协议、三阶提交协议

随着大型网站的各种高并发访问、海量数据处理等场景越来越多,如何实现网站的高可用、易伸缩、可扩展、安全等目标就显得越来越重要。

2882
来自专栏python学习之旅

loadrunner笔记(一):下载、安装loadrunner和负载压力测试概念说明

1885
来自专栏Eternally运维

FinalShell – SSH终端,同屏SFTP,同步目录切换一体化服务器管理

简介 FinalShell是一体化的的服务器,网络管理软件,功能强大的开发,运维工具,充分满足开发,运维需求.

1911
来自专栏FreeBuf

看我如何综合利用3个安全问题成功劫持Flickr账户获得7千美元漏洞赏金

Flickr( flickr.com)为雅虎Yahoo旗下图片和视频分享平台,提供免费及付费数位照片视频储存、分享和线上社交应用服务。本文中作者通过身份认证参数...

2017
来自专栏架构师之路

换IP的是你,凭啥重启的却是我?

一、缘起 很多公司,技术经常遇到这样的场景: 1)硬件升级,要换一台高配机器 2)网络重新规划,若干服务器要调整机架 3)服务器当机,要重新部署恢复服务 … ?...

3937
来自专栏IT米粉

MQ(消息队列)常见的应用场景解析

提高系统性能首先考虑的是数据库的优化,之前一篇文章《数据库的使用你可能忽略了这些》中有提到过开发中,针对数据库需要注意的事项。但是数据库因为历史原因,横向扩展是...

2492
来自专栏Java架构师学习

深入理解大型网站架构的核心——了解性能

1563
来自专栏纯洁的微笑

[高级]关于分布式事务、两阶段提交协议、三阶提交协议

在分布式系统中,为了保证数据的高可用,通常,我们会将数据保留多个副本(replica),这些副本会放置在不同的物理的机器上。为了对用户提供正确的增\删\改\差等...

1123

扫码关注云+社区

领取腾讯云代金券