数据部门如何All In AI

这个话题是我最近一直在思考的,不一定成熟,这篇文章权做笔记

前言

大数据部门的常见能力如下:

  1. 报表统计
  2. 算力/存储输出
  3. 推荐/搜索/精准营销等传统产品形态

通常,大数据部门会花费很大的力气构建数据平台,而这个数据平台除了能让研发,算法,分析师等角色爽一些,从宏观角度很大的节省部门人力成本,提高效率以外,似乎对公司/其他业务部门并无一个直接的输出。这也是很多大数据部门领导非常焦虑的地方。

那么出路在哪里呢?

All In AI

事实上,真正能帮助业务提高效能,提供创新产品的必然是AI,AI是一种模式的输出。其价值点,第一个是可以给业务每个环节赋能,比如反垃圾可以减少审核同学的工作量,智能邀请可以减轻运营同学的工作压力;第二个是创新产品,高一点的有比较常见有无人驾驶,智能语音产品,医疗诊断等,低一点的,则可能是某个具体的功能模块对外输出,比如知识图谱。

从上面我们可以看到,数据部门的最大价值,最终会通过AI来进行落地,并且还会给部门/公司提供了极为丰富的想象空间。

如何 All In AI?

对于这件事情,我们要仔细研究一个核心的东西: 资源。

资源我们又分为:

  1. 平台资源,如果你还在刀耕火种阶段做开发,做算法,那么咱也别谈什么All in AI了。
  2. 人力资源,一场大型战争,核心还是在于看能动员的人力资源,但面对海量需求,你是否有足够的人力去应付?
  3. 组织资源,合理的组织是能够极大的释放生产力的。

经过这么多年的发展,平台已经很成熟了。我们知道,AI平台是基于数据平台的之上的,其结构是一个金字塔形状的。所以第一步你需要有一个良好的数据平台,其次你还需要有一个AI平台,让单一算法落地变得容易。

人力资源的问题是个大问题,算法团队再大,也就是大数据部门一个子部门/组。如何在保持现有成本的情况下,扩大人力呢? AI平台对单一算法(后面我会解释什么是单一算法)问题是非常友好的,可能一个普通的工程师(甚至运营,分析师)都可以完成的。这样,部门所有的人都具备了成为AI人力的潜能。我们通过一定的培训和锻炼,可以使得研发,分析等都具备成为AI人才的潜力。需要的时候,我们提纯下即可。

回过头来看看,什么是单一算法。所谓单一算法就是具体的某个算法问题,比如对于帖子的情感分类,就是一个标准的文本分类问题。通常一个足够细化的问题,我们可以很容易将其转化为一个分类,回归,排序,规则类算法问题。现阶段,按我的了解,AI平台通常只能做到针对单一算法的自助化。那么为了让组织更加合理高效,重构数据部门团队就很有必要了。

算法部门需要切分成三个子团队,一个是偏研究性质的,一个是偏业务性质的,还有一个则是AI平台和工具团队。业务性质的团队常常需要用到研究性质团队的副产品以及基于AI平台和工具团队的产品之上进行工作,同时向他们反馈自己的诉求和问题。

业务算法团队,通常也需要分成两个层级,*** 一个是解决方案设计者,该角色是将一个实际的业务问题分拆成N个算法和工程问题***(关于这个角色,还可以参考我早期的一个专题机器学习团队思考 )。一个是算法实施者,该角色只是针对单一算法问题的,可以在AI平台上很快的解决对应问题的。

研究性质的团队,可以分成三个部分,一个是读Paper,试图将学术论文转化为工业实践的,一个是算法基础构建,维护比如知识图谱这种非常底层的系统,一个是创新产品,他的目标是利用现有的算法,是否能抽象出新产品。

通过如上方法,有了很好的平台能力,很好的人员基础,加上合理的组织,All In AI或许变得可能。

总结

本文我们说了为什么要All In AI,要实现All In AI 不仅仅需要有一个好的平台(数据、算法平台),也需要有良好的动员人力资源的能力,采用一个合理的算法组织架构充分利用人力资源。尤其是业务算法团队里的 “解决方案设计者”,该角色能够将一个实际的业务问题分拆成N个算法和工程问题,是AI落地非常非常重要的一个角色。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据文摘

Airbnb数据科学团队进化论:如何由内而外实现数据驱动

2153
来自专栏CDA数据分析师

傅志华:腾讯如何用数据帮助产品经理做精细化运营

在“2013中国技术商业论坛暨领袖峰会”无数据不互联专场,腾讯云数据分析中心总监傅志华讲述了,腾讯如何利用用户生命周期管理办法帮助产品经理做精细化运营。 【用数...

2238
来自专栏云计算D1net

统计和分析网络大数据的方法

大数据给互联网带来的是空前的信息大爆炸,它不仅改变了互联网的数据应用模式,还将深深影响着人们的生产生活。深处在大数据时代中,人们认识到大数据已经将数据分析的认识...

3677
来自专栏PPV课数据科学社区

对于打算入门数据分析的菜鸟来说,你想提醒他们什么?

“面对大数据时代趋势和与之相对的高薪,越来越多没有怎么学过计算机和统计学的外门人士也想跃跃欲试踏进数据科学的领域,请问大家伙儿有没有点建议想提醒新人呢。比如一路...

1352
来自专栏AI科技评论

专访腾讯钟黎:知文团队在智能问答系统方面的探索

对于刚刚成立的腾讯知文团队来说,过去是收获颇丰的一年。虽然成立尚不足一年,但这一团队已在 AAAI、IJCAI、SIGIR、EMNLP、COLING 等顶会上发...

2021
来自专栏腾讯研究院的专栏

大数据带来的四种思维

近年来大数据技术的快速发展深刻改变了我们的生活、工作和思维方式。大数据研究专家舍恩伯格指出,大数据时代,人们对待数据的思维方式会发生如下三个变化:第一,人们处...

2089
来自专栏CDA数据分析师

人工智能与机器学习:两者有何不同?

在过去几年,人工智能和机器学习频繁出现在技术新闻和各种网站上。两者常常被用作同义词,但许多专家认为它们存在微妙且重大的区别。 当然,专家们自己有时对于那些区别到...

2297
来自专栏企鹅号快讯

也许这才是用户画像的正确姿势

这完全是一个以用户为中心的时代,以用户特征对自己的产品进行定位的时代。 所以今天说一说用户画像这件事。大数据的广泛传播,让我们对用户画像这个词语并有了很多了解,...

2428
来自专栏安智客

一张图读懂新一代人工智能发展规划

一张图读懂国务院关于印发《新一代人工智能发展规划的通知》 ? 附录: 专栏1 基础理论 1.大数据智能理论。研究数据驱动与知识引导相结合的人工智能新方法、以自然...

3047
来自专栏养码场

爬取某招聘网站、近2万+程序员的工资单,得到以下5点涨薪结论!

某一技术人爬了某招聘网站,获取近一周的程序员工资18275条。其中,有工资的17628条(北京4892,上海5073,广州3386,深圳4277)。本文分别从工...

641

扫码关注云+社区

领取腾讯云代金券