虚拟内存探究 -- 第三篇:一步一步画虚拟内存图

这是虚拟内存系列文章的第三篇。 前面我们提到在进程的虚拟内存中可以找到哪些东西,以及在哪里去找。 本文我们将通过打印程序中不同元素内存地址的方式,一步一步细化下面的虚拟内存图:

一、预备知识

为了方便理解本文,你需要具备以下知识:

二、实验环境

所有的脚本和程序都在下面的环境中测试过:

  • Ubuntu
    • Linux ubuntu 4.4.0-31-generic #50~14.04.1-Ubuntu SMP Wed Jul 13 01:07:32 UTC 2016 x86_64 x86_64 x86_64 GNU/Linux
    • 下面提到的都是基于本系统的,其他系统可能会有差异
  • gcc
    • gcc (Ubuntu 4.8.4-2ubuntu1~14.04.3) 4.8.4
  • objdump
    • GNU objdump (GNU Binutils for Ubuntu) 2.24
  • udcli
    • udis86 1.7.2
  • bc
    • bc 1.06.95

三、栈

首先我们想确认的是栈在虚拟内存中的位置。 我们知道,C语言中的局部变量位于栈上。如果我们打印一个局部变量的内存地址,就可以根据这个地址寻找栈在虚拟内存中的位置。我们使用下面的程序(main-1.c)寻找栈的位置:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/**
 * main - print locations of various elements
 *
 * Return: EXIT_FAILURE if something failed. Otherwise EXIT_SUCCESS
 */
int main(void)
{
    int a;

    printf("Address of a: %p\n", (void *)&a);
    return (EXIT_SUCCESS);
}

编译运行:

julien@holberton:~/holberton/w/hackthevm2$ gcc -Wall -Wextra -pedantic -Werror main-0.c -o 0
julien@holberton:~/holberton/w/hackthevm2$ ./0
Address of a: 0x7ffd14b8bd9c
julien@holberton:~/holberton/w/hackthevm2$ 

这是我们和其他元素的地址相比的第一个参照地址。

四、堆

我们使用malloc为变量分配的内存位于堆上。 可以在程序中添加一个使用malloc的语句,借此查看malloc返回的地址位于哪里。如下所示(main-1.c):

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/**
 * main - print locations of various elements
 *
 * Return: EXIT_FAILURE if something failed. Otherwise EXIT_SUCCESS
 */
int main(void)
{
    int a;
    void *p;

    printf("Address of a: %p\n", (void *)&a);
    p = malloc(98);
    if (p == NULL)
    {
        fprintf(stderr, "Can't malloc\n");
        return (EXIT_FAILURE);
    }
    printf("Allocated space in the heap: %p\n", p);
    return (EXIT_SUCCESS);
}

编译运行:

julien@holberton:~/holberton/w/hackthevm2$ gcc -Wall -Wextra -pedantic -Werror main-1.c -o 1
julien@holberton:~/holberton/w/hackthevm2$ ./1 
Address of a: 0x7ffd4204c554
Allocated space in the heap: 0x901010
julien@holberton:~/holberton/w/hackthevm2$ 

至此可以确定堆(0x901010)在栈(0x7ffd4204c554)的下面。据此可以画出如下的内存图:

五、可执行程序的位置

可执行程序也会被加载到虚拟内存中。如果我们打印main函数的地址,就可以知道可执行程序在虚拟内存中相对于堆栈的位置。 我们看看它是否真的在堆的下面(main-2.c):

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/**
 * main - print locations of various elements
 *
 * Return: EXIT_FAILURE if something failed. Otherwise EXIT_SUCCESS
 */
int main(void)
{
    int a;
    void *p;

    printf("Address of a: %p\n", (void *)&a);
    p = malloc(98);
    if (p == NULL)
    {
        fprintf(stderr, "Can't malloc\n");
        return (EXIT_FAILURE);
    }
    printf("Allocated space in the heap: %p\n", p);
    printf("Address of function main: %p\n", (void *)main);
    return (EXIT_SUCCESS);
}

编译并运行:

julien@holberton:~/holberton/w/hackthevm2$ gcc -Wall -Wextra -Werror main-2.c -o 2
julien@holberton:~/holberton/w/hackthevm2$ ./2 
Address of a: 0x7ffdced37d74
Allocated space in the heap: 0x2199010
Address of function main: 0x40060d
julien@holberton:~/holberton/w/hackthevm2$ 

不出所料,可执行程序(0x40060d)果然位于堆的下面(0x2199010)。但我们必须确认这是我们的程序所在地址,而不是指向其他地址的指针的地址。我们借助工具objdump来查看函数main的内存地址:

julien@holberton:~/holberton/w/hackthevm2$ objdump -M intel -j .text -d 2 | grep '<main>:' -A 5
000000000040060d <main>:
  40060d:   55                      push   rbp
  40060e:   48 89 e5                mov    rbp,rsp
  400611:   48 83 ec 10             sub    rsp,0x10
  400615:   48 8d 45 f4             lea    rax,[rbp-0xc]
  400619:   48 89 c6                mov    rsi,rax

000000000040060d <main> –>该地址和我们打印出来的0x40060d一致。如果你还持有怀疑,可以打印出该地址开始的几个字节,看看和objdump输出的是否一致(main-3.c):

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/**
 * main - print locations of various elements
 *
 * Return: EXIT_FAILURE if something failed. Otherwise EXIT_SUCCESS
 */
int main(void)
{
    int a;
    void *p;
    unsigned int i;

    printf("Address of a: %p\n", (void *)&a);
    p = malloc(98);
    if (p == NULL)
    {
        fprintf(stderr, "Can't malloc\n");
        return (EXIT_FAILURE);
    }
    printf("Allocated space in the heap: %p\n", p);
    printf("Address of function main: %p\n", (void *)main);
    printf("First bytes of the main function:\n\t");
    for (i = 0; i < 15; i++)
    {
        printf("%02x ", ((unsigned char *)main)[i]);
    }
    printf("\n");
    return (EXIT_SUCCESS);
}
julien@holberton:~/holberton/w/hackthevm2$ gcc -Wall -Wextra -Werror main-3.c -o 3
julien@holberton:~/holberton/w/hackthevm2$ objdump -M intel -j .text -d 3 | grep '<main>:' -A 5
000000000040064d <main>:
  40064d:   55                      push   rbp
  40064e:   48 89 e5                mov    rbp,rsp
  400651:   48 83 ec 10             sub    rsp,0x10
  400655:   48 8d 45 f0             lea    rax,[rbp-0x10]
  400659:   48 89 c6                mov    rsi,rax
julien@holberton:~/holberton/w/hackthevm2$ ./3 
Address of a: 0x7ffeff0f13b0
Allocated space in the heap: 0x8b3010
Address of function main: 0x40064d
First bytes of the main function:
    55 48 89 e5 48 83 ec 10 48 8d 45 f0 48 89 c6 
julien@holberton:~/holberton/w/hackthevm2$ echo "55 48 89 e5 48 83 ec 10 48 8d 45 f0 48 89 c6" | udcli -64 -x -o 40064d
000000000040064d 55               push rbp                
000000000040064e 4889e5           mov rbp, rsp            
0000000000400651 4883ec10         sub rsp, 0x10           
0000000000400655 488d45f0         lea rax, [rbp-0x10]     
0000000000400659 4889c6           mov rsi, rax            
julien@holberton:~/holberton/w/hackthevm2$

提示:可以在这里下载反汇编工具Udis86 Disassembler Library

由此可见,我们打印出来的地址和内容都是一致的。因此可以确认这个地址就是我们的main函数。

更新后内存布局示意图如下:

六、命令行参数和环境变量

main函数可接收以下参数:

  • 命令行参数
    • main函数的第一个参数(通常写作argcac)代表命令行参数的个数
    • main函数的第二个参数(通常写作argvav)是一个字符串指针数组,数组的每个成员都指向一个命令行参数(C字符串)
  • 环境变量参数
    • main函数的第三个参数(通常写作envenvp)也是一个字符串指针数组,数组的每个成员都指向一个环境变量(C字符串)

我们看下这些元素位于虚拟内存的哪部分(main-4.c):

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/**
 * main - print locations of various elements
 *
 * Return: EXIT_FAILURE if something failed. Otherwise EXIT_SUCCESS
 */
int main(int ac, char **av, char **env)
{
        int a;
        void *p;
        int i;

        printf("Address of a: %p\n", (void *)&a);
        p = malloc(98);
        if (p == NULL)
        {
                fprintf(stderr, "Can't malloc\n");
                return (EXIT_FAILURE);
        }
        printf("Allocated space in the heap: %p\n", p);
        printf("Address of function main: %p\n", (void *)main);
        printf("First bytes of the main function:\n\t");
        for (i = 0; i < 15; i++)
        {
                printf("%02x ", ((unsigned char *)main)[i]);
        }
        printf("\n");
        printf("Address of the array of arguments: %p\n", (void *)av);
        printf("Addresses of the arguments:\n\t");
        for (i = 0; i < ac; i++)
        {
                printf("[%s]:%p ", av[i], av[i]);
        }
        printf("\n");
        printf("Address of the array of environment variables: %p\n", (void *)env);
    printf("Address of the first environment variable: %p\n", (void *)(env[0]));
        return (EXIT_SUCCESS);
}

编译并运行:

julien@holberton:~/holberton/w/hackthevm2$ gcc -Wall -Wextra -Werror main-4.c -o 4
julien@holberton:~/holberton/w/hackthevm2$ ./4 Hello Holberton School!
Address of a: 0x7ffe7d6d8da0
Allocated space in the heap: 0xc8c010
Address of function main: 0x40069d
First bytes of the main function:
    55 48 89 e5 48 83 ec 30 89 7d ec 48 89 75 e0 
Address of the array of arguments: 0x7ffe7d6d8e98
Addresses of the arguments:
    [./4]:0x7ffe7d6da373 [Hello]:0x7ffe7d6da377 [Holberton]:0x7ffe7d6da37d [School!]:0x7ffe7d6da387 
Address of the array of environment variables: 0x7ffe7d6d8ec0

/* 译者注:根据上面的程序,应该不会有下面的输出的,但作者接下来的讨论用到了这部分,所以保留这部分 */
Address of the first environment variables:
    [0x7ffe7d6da38f]:"XDG_VTNR=7"
    [0x7ffe7d6da39a]:"XDG_SESSION_ID=c2"
    [0x7ffe7d6da3ac]:"CLUTTER_IM_MODULE=xim"
julien@holberton:~/holberton/w/hackthevm2$ 

在这之前我们知道命令行参数和环境变量都位于栈上面,但是不知道二者的相对位置。现在可以确定二者的相对位置:

stack (0x7ffe7d6d8da0) < argv (0x7ffe7d6d8e98) < env (0x7ffe7d6d8ec0) < arguments (从 0x7ffe7d6da3730x7ffe7d6da387 + 8 (8 = 字符串school大小 + 1 字节的字符串结束符\0)) < environment variables (起始地址是0x7ffe7d6da38f)。

事实上,我们可以看出所有的命令行参数在内存中都是相邻的,并且和环境变量也是相邻的(从0x7ffe7d6da387 + 8 = 0x7ffe7d6da38f可以看出)。

数组变量argv和env是相邻的吗?

数组变量argv有5个元素(4个是从命令行输入的,另一个是空元素NULLargv总是以NULL结束,以此标记数组的结尾)。argv的每个元素都是指向char类型的指针,由于我们是64位系统,所以一个指针是8个字节(可通过C语言中的操作符sizeof()获取指针大小)。因此数组argv占用 5 * 8 = 40字节,也就是十六进制的0x28。将0x28加到argv的起始地址0x7ffe7d6d8e98, 得到0x7ffe7d6d8ec0(也就是env的地址)!

因此,数组变量argv和env在内存中是相邻的!

第一个命令行参数紧挨着数组变量env吗?

为了回答这个问题,我们需要确认数组env的大小。数组env也是以NULL指针结束,基于此,我们可以遍历数组env以确定数组大小,代码如下所示(main-5.c):

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/**                                                                                                      
 * main - print locations of various elements                                                            
 *                                                                                                       
 * Return: EXIT_FAILURE if something failed. Otherwise EXIT_SUCCESS                                      
 */
int main(int ac, char **av, char **env)
{
     int a;
     void *p;
     int i;
     int size;

     printf("Address of a: %p\n", (void *)&a);
     p = malloc(98);
     if (p == NULL)
     {
          fprintf(stderr, "Can't malloc\n");
          return (EXIT_FAILURE);
     }
     printf("Allocated space in the heap: %p\n", p);
     printf("Address of function main: %p\n", (void *)main);
     printf("First bytes of the main function:\n\t");
     for (i = 0; i < 15; i++)
     {
          printf("%02x ", ((unsigned char *)main)[i]);
     }
     printf("\n");
     printf("Address of the array of arguments: %p\n", (void *)av);
     printf("Addresses of the arguments:\n\t");
     for (i = 0; i < ac; i++)
     {
          printf("[%s]:%p ", av[i], av[i]);
     }
     printf("\n");
     printf("Address of the array of environment variables: %p\n", (void *)env);
     printf("Address of the first environment variables:\n");
     for (i = 0; i < 3; i++)
     {
          printf("\t[%p]:\"%s\"\n", env[i], env[i]);
     }
     /* size of the env array */
     i = 0;
     while (env[i] != NULL)
     {
          i++;
     }
     i++; /* the NULL pointer */
     size = i * sizeof(char *);
     printf("Size of the array env: %d elements -> %d bytes (0x%x)\n", i, size, size);
     return (EXIT_SUCCESS);
}

编译运行:

julien@holberton:~/holberton/w/hackthevm2$ ./5 Hello Betty Holberton!
Address of a: 0x7ffc77598acc
Allocated space in the heap: 0x2216010
Address of function main: 0x40069d
First bytes of the main function:
    55 48 89 e5 48 83 ec 40 89 7d dc 48 89 75 d0 
Address of the array of arguments: 0x7ffc77598bc8
Addresses of the arguments:
    [./5]:0x7ffc7759a374 [Hello]:0x7ffc7759a378 [Betty]:0x7ffc7759a37e [Holberton!]:0x7ffc7759a384 
Address of the array of environment variables: 0x7ffc77598bf0
Address of the first environment variables:
    [0x7ffc7759a38f]:"XDG_VTNR=7"
    [0x7ffc7759a39a]:"XDG_SESSION_ID=c2"
    [0x7ffc7759a3ac]:"CLUTTER_IM_MODULE=xim"
Size of the array env: 62 elements -> 496 bytes (0x1f0)


julien@holberton:~/holberton/w/hackthevm2$ bc
bc 1.06.95
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'. 
obase=16
ibase=16
1F0+7FFC77598BF0
7FFC77598DE0
quit
julien@holberton:~/holberton/w/hackthevm2$ 

0x1F0 + 0x7FFC77598BF0 = 0x7FFC77598DE0, 该值仍然小于第一个命令行参数的存储地址0x7ffc7759a374所以答案是否定的!

至此,我们可以画出如下所示的内存布局图(注意哪些是相邻的,哪些是不相邻的):

译者注:下图中的argv array指的是变量argv的地址,’env array’指的是变量env的地址。

七、栈真的是向下生长吗?

可以通过函数调用来确认这个问题。如果栈真的向下生长,调用函数中的变量地址应该大于被调用函数中的变量地址main-6.c):

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/**                                                                                                      
 * f - print locations of various elements                                                               
 *                                                                                                       
 * Returns: nothing                                                                                      
 */
void f(void)
{
     int a;
     int b;
     int c;

     a = 98;
     b = 1024;
     c = a * b;
     printf("[f] a = %d, b = %d, c = a * b = %d\n", a, b, c);
     printf("[f] Adresses of a: %p, b = %p, c = %p\n", (void *)&a, (void *)&b, (void *)&c);
}

/**                                                                                                      
 * main - print locations of various elements                                                            
 *                                                                                                       
 * Return: EXIT_FAILURE if something failed. Otherwise EXIT_SUCCESS                                      
 */
int main(int ac, char **av, char **env)
{
     int a;
     void *p;
     int i;
     int size;

     printf("Address of a: %p\n", (void *)&a);
     p = malloc(98);
     if (p == NULL)
     {
          fprintf(stderr, "Can't malloc\n");
          return (EXIT_FAILURE);
     }
     printf("Allocated space in the heap: %p\n", p);
     printf("Address of function main: %p\n", (void *)main);
     printf("First bytes of the main function:\n\t");
     for (i = 0; i < 15; i++)
     {
          printf("%02x ", ((unsigned char *)main)[i]);
     }
     printf("\n");
     printf("Address of the array of arguments: %p\n", (void *)av);
     printf("Addresses of the arguments:\n\t");
     for (i = 0; i < ac; i++)
     {
          printf("[%s]:%p ", av[i], av[i]);
     }
     printf("\n");
     printf("Address of the array of environment variables: %p\n", (void *)env);
     printf("Address of the first environment variables:\n");
     for (i = 0; i < 3; i++)
     {
          printf("\t[%p]:\"%s\"\n", env[i], env[i]);
     }
     /* size of the env array */
     i = 0;
     while (env[i] != NULL)
     {
          i++;
     }
     i++; /* the NULL pointer */
     size = i * sizeof(char *);
     printf("Size of the array env: %d elements -> %d bytes (0x%x)\n", i, size, size);
     f();
     return (EXIT_SUCCESS);
}

编译运行:

julien@holberton:~/holberton/w/hackthevm2$ gcc -Wall -Wextra -Werror main-6.c -o 6
julien@holberton:~/holberton/w/hackthevm2$ ./6
Address of a: 0x7ffdae53ea4c
Allocated space in the heap: 0xf32010
Address of function main: 0x4006f9
First bytes of the main function:
    55 48 89 e5 48 83 ec 40 89 7d dc 48 89 75 d0 
Address of the array of arguments: 0x7ffdae53eb48
Addresses of the arguments:
    [./6]:0x7ffdae54038b 
Address of the array of environment variables: 0x7ffdae53eb58
Address of the first environment variables:
    [0x7ffdae54038f]:"XDG_VTNR=7"
    [0x7ffdae54039a]:"XDG_SESSION_ID=c2"
    [0x7ffdae5403ac]:"CLUTTER_IM_MODULE=xim"
Size of the array env: 62 elements -> 496 bytes (0x1f0)
[f] a = 98, b = 1024, c = a * b = 100352
[f] Adresses of a: 0x7ffdae53ea04, b = 0x7ffdae53ea08, c = 0x7ffdae53ea0c
julien@holberton:~/holberton/w/hackthevm2$ 

main函数中变量a的地址0x7ffdae53ea4c大于被调用函数f中变量a的地址0x7ffdae53ea04 。所以,栈确实是向下生长的!

至此,我们可以画出如下所示的内存布局图(注意栈的生长方向):

八、/proc

我们通过/proc/[pid]/maps(可参阅man proc《虚拟内存探究 – 第一篇:C strings & /proc》中的相关介绍)再次确认之前得到的结论是否正确。

我们在(main-6.c)的基础上添加个getchar()函数以便暂停程序的执行,有时间查看/proc(main-7.c):

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/**                                                                                                      
 * f - print locations of various elements                                                               
 *                                                                                                       
 * Returns: nothing                                                                                      
 */
void f(void)
{
     int a;
     int b;
     int c;

     a = 98;
     b = 1024;
     c = a * b;
     printf("[f] a = %d, b = %d, c = a * b = %d\n", a, b, c);
     printf("[f] Adresses of a: %p, b = %p, c = %p\n", (void *)&a, (void *)&b, (void *)&c);
}

/**                                                                                                      
 * main - print locations of various elements                                                            
 *                                                                                                       
 * Return: EXIT_FAILURE if something failed. Otherwise EXIT_SUCCESS                                      
 */
int main(int ac, char **av, char **env)
{
     int a;
     void *p;
     int i;
     int size;

     printf("Address of a: %p\n", (void *)&a);
     p = malloc(98);
     if (p == NULL)
     {
          fprintf(stderr, "Can't malloc\n");
          return (EXIT_FAILURE);
     }
     printf("Allocated space in the heap: %p\n", p);
     printf("Address of function main: %p\n", (void *)main);
     printf("First bytes of the main function:\n\t");
     for (i = 0; i < 15; i++)
     {
          printf("%02x ", ((unsigned char *)main)[i]);
     }
     printf("\n");
     printf("Address of the array of arguments: %p\n", (void *)av);
     printf("Addresses of the arguments:\n\t");
     for (i = 0; i < ac; i++)
     {
          printf("[%s]:%p ", av[i], av[i]);
     }
     printf("\n");
     printf("Address of the array of environment variables: %p\n", (void *)env);
     printf("Address of the first environment variables:\n");
     for (i = 0; i < 3; i++)
     {
          printf("\t[%p]:\"%s\"\n", env[i], env[i]);
     }
     /* size of the env array */
     i = 0;
     while (env[i] != NULL)
     {
          i++;
     }
     i++; /* the NULL pointer */
     size = i * sizeof(char *);
     printf("Size of the array env: %d elements -> %d bytes (0x%x)\n", i, size, size);
     f();
     getchar();
     return (EXIT_SUCCESS);
}

编译执行:

julien@holberton:~/holberton/w/hackthevm2$ gcc -Wall -Wextra -Werror main-7.c -o 7
julien@holberton:~/holberton/w/hackthevm2$ ./7 Rona is a Legend SRE
Address of a: 0x7fff16c8146c
Allocated space in the heap: 0x2050010
Address of function main: 0x400739
First bytes of the main function:
    55 48 89 e5 48 83 ec 40 89 7d dc 48 89 75 d0 
Address of the array of arguments: 0x7fff16c81568
Addresses of the arguments:
    [./7]:0x7fff16c82376 [Rona]:0x7fff16c8237a [is]:0x7fff16c8237f [a]:0x7fff16c82382 [Legend]:0x7fff16c82384 [SRE]:0x7fff16c8238b 
Address of the array of environment variables: 0x7fff16c815a0
Address of the first environment variables:
    [0x7fff16c8238f]:"XDG_VTNR=7"
    [0x7fff16c8239a]:"XDG_SESSION_ID=c2"
    [0x7fff16c823ac]:"CLUTTER_IM_MODULE=xim"
Size of the array env: 62 elements -> 496 bytes (0x1f0)
[f] a = 98, b = 1024, c = a * b = 100352
[f] Adresses of a: 0x7fff16c81424, b = 0x7fff16c81428, c = 0x7fff16c8142c

查看/proc/[pid]/maps:

julien@holberton:~$ ps aux | grep "./7" | grep -v grep
julien     5788  0.0  0.0   4336   628 pts/8    S+   18:04   0:00 ./7 Rona is a Legend SRE
julien@holberton:~$ cat /proc/5788/maps
00400000-00401000 r-xp 00000000 08:01 171828                             /home/julien/holberton/w/hackthevm2/7
00600000-00601000 r--p 00000000 08:01 171828                             /home/julien/holberton/w/hackthevm2/7
00601000-00602000 rw-p 00001000 08:01 171828                             /home/julien/holberton/w/hackthevm2/7
02050000-02071000 rw-p 00000000 00:00 0                                  [heap]
7f68caa1c000-7f68cabd6000 r-xp 00000000 08:01 136253                     /lib/x86_64-linux-gnu/libc-2.19.so
7f68cabd6000-7f68cadd6000 ---p 001ba000 08:01 136253                     /lib/x86_64-linux-gnu/libc-2.19.so
7f68cadd6000-7f68cadda000 r--p 001ba000 08:01 136253                     /lib/x86_64-linux-gnu/libc-2.19.so
7f68cadda000-7f68caddc000 rw-p 001be000 08:01 136253                     /lib/x86_64-linux-gnu/libc-2.19.so
7f68caddc000-7f68cade1000 rw-p 00000000 00:00 0 
7f68cade1000-7f68cae04000 r-xp 00000000 08:01 136229                     /lib/x86_64-linux-gnu/ld-2.19.so
7f68cafe8000-7f68cafeb000 rw-p 00000000 00:00 0 
7f68cafff000-7f68cb003000 rw-p 00000000 00:00 0 
7f68cb003000-7f68cb004000 r--p 00022000 08:01 136229                     /lib/x86_64-linux-gnu/ld-2.19.so
7f68cb004000-7f68cb005000 rw-p 00023000 08:01 136229                     /lib/x86_64-linux-gnu/ld-2.19.so
7f68cb005000-7f68cb006000 rw-p 00000000 00:00 0 
7fff16c62000-7fff16c83000 rw-p 00000000 00:00 0                          [stack]
7fff16d07000-7fff16d09000 r--p 00000000 00:00 0                          [vvar]
7fff16d09000-7fff16d0b000 r-xp 00000000 00:00 0                          [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0                  [vsyscall]
julien@holberton:~$ 

通过maps文件,我们可以确认以下几点:

  • 栈地址从0x7fff16c62000开始,结束于0x7fff16c83000。我们的局部变量都位于这一区域(0x7fff16c8146c, 0x7fff16c81424, 0x7fff16c81428, 0x7fff16c8142c)。
  • 堆地址从02050000开始,结束于02071000。我们动态分配的内存也位于这一区域(0x2050010)。
  • 代码段(main函数)位于地址0x400739,因此位于下面的区段: 00400000-00401000 r-xp 00000000 08:01 171828 /home/julien/holberton/w/hackthevm2/7 它来自可执行文件/home/julien/holberton/w/hackthevm2/7,并且具有可执行权限。
  • 命令行参数(变量argv)和环境变量参数(变量env)(从地址0x7fff16c815680x7fff16c8238f + 0x1f0)落在栈的范围内。也就是说,它们在栈内部而不是在栈外面。

这也带来了更多的问题:

  • 为什么可执行文件在内存中被分成三部分,并且每部分具有不同的权限?下面两个区域中是什么?
    • 00600000-00601000 r--p 00000000 08:01 171828 /home/julien/holberton/w/hackthevm2/7
    • 00601000-00602000 rw-p 00001000 08:01 171828 /home/julien/holberton/w/hackthevm2/7
  • 其他的区段又是干嘛的?
  • 我们动态分配的内存为何不是从堆的起始位置0x2050000开始,而是偏移16个字节从0x2050010开始?

当然还有另一个事实没有确认:堆真的是向上生长的吗?

我们将在下一篇文章中解答这些问题。在结束本章前,让我们看下目前得到的虚拟内存示意图:

九、下节预告

通过简单的打印信息,我们学到了有关虚拟内存的很多知识。但是在完成虚拟内存布局图之前,我们还有一些问题需要解决。下一篇文章我们将解决剩余问题。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏余林丰

Spring入门导读——IoC和AOP

和MyBatis系列不同的是,在正式开始Spring入门时,我们先来了解两个关于Spring核心的概念,IoC(Inverse of Control)控制反转和...

18010
来自专栏Java帮帮-微信公众号-技术文章全总结

Spring IOC源码解读

Spring IOC源码解读 此文讲解非常详细,内容较多,请耐心看完,谢谢 讲解内容: 一、 什么是Ioc/DI? 二、 Spring IOC体系结构 (1) ...

5195
来自专栏JMCui

再学习之Spring(依赖注入).

一、概述     Spring框架是以 简化Java EE应用程序的开发 为目标而创建的。Spring可以实现很多功能,但是这些功能的底层都依赖于它的两个核心特...

3696
来自专栏菩提树下的杨过

spring cloud:Edgware.RELEASE版本中zuul回退方法的变化

Edgware.RELEASE以前的版本中,zuul网关中有一个ZuulFallbackProvider接口,代码如下: public interface Zu...

2276
来自专栏杨建荣的学习笔记

一些“简单”的linux命令(r2笔记46天)

有些linux命令看起来极其简单,只包含2个字符,但确有很强的功能性。看起来还是有些陌生的命令,不过在工作中别忘记它们的存在。 ab 这条命令式做为性能测试所...

2958
来自专栏美团技术团队

这个Spring高危漏洞,你修补了吗?

前言 2009年9月Spring 3.0 RC1发布后,Spring就引入了SpEL(Spring Expression Language)。对于开发者而言,引...

1.1K11
来自专栏平凡文摘

面试问烂的 Spring AOP 原理、SpringMVC 过程

Spring AOP ,SpringMVC ,这两个应该是国内面试必问题,网上有很多答案,其实背背就可以。但今天笔者带大家一起深入浅出源码,看看他的原理。以期让...

1172
来自专栏王磊的博客

Spring Boot 最佳实践(四)模板引擎Thymeleaf集成

Thymeleaf是一种Java XML / XHTML / HTML5模板引擎,可以在Web和非Web环境中使用。它更适合在基于MVC的Web应用程序的视图层...

2552
来自专栏JackieZheng

学习SpringMVC——说说视图解析器

  各位前排的,后排的,都不要走,咱趁热打铁,就这一股劲我们今天来说说spring mvc的视图解析器(不要抢,都有位子~~~)   相信大家在昨天那篇如何获取...

25110
来自专栏程序猿DD

【译】Spring 官方教程:创建批处理服务

原文:Creating a Batch Service 译者:Mr.lzc 校对:lexburner 本指南将引导你完成创建基本的批处理驱动解决方案的过程。 你...

5227

扫码关注云+社区