数据库之分库分表-垂直?水平?

一、数据库瓶颈

  不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。在业务Service来看就是,可用数据库连接少甚至无连接可用。接下来就可以想象了吧(并发量、吞吐量、崩溃)。

1、IO瓶颈

第一种:磁盘读IO瓶颈,热点数据太多,数据库缓存放不下,每次查询时会产生大量的随机IO,降低查询速度 -> 分库和垂直分表

第二种:网络IO瓶颈,请求的数据太多,网络带宽不够 -> 分库

2、CPU瓶颈

第一种:SQL问题,如SQL中包含join,group by,order by,非索引字段条件查询等,增加CPU运算的操作 -> SQL优化,建立合适的索引,在业务Service层进行业务计算。

第二种:单表数据量太大,查询时扫描的行太多,SQL效率低,增加CPU运算的操作 -> 水平分表

二、分库分表

1、水平分库

  1. 概念:以字段为依据,按照一定策略(hash、range等),将一个中的数据拆分到多个中。
  2. 结果:
    • 每个结构都一样;
    • 每个数据都不一样,没有交集;
    • 所有并集是全量数据;
  3. 场景:系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库。
  4. 分析:库多了,io和cpu的压力自然可以成倍缓解。

2、水平分表

  1. 概念:以字段为依据,按照一定策略(hash、range等),将一个中的数据拆分到多个中。
  2. 结果:
    • 每个结构都一样;
    • 每个数据都不一样,没有交集;
    • 所有并集是全量数据;
  3. 场景:系统绝对并发量并没有上来,只是单表的数据量太多,影响了SQL效率,加重了CPU负担,以至于成为瓶颈。
  4. 分析:表的数据量少了,单次SQL执行效率高,自然减轻了CPU的负担。

3、垂直分库

  1. 概念:以为依据,按照业务归属不同,将不同的拆分到不同的中。
  2. 结果:
    • 每个结构都不一样;
    • 每个数据也不一样,没有交集;
    • 所有并集是全量数据;
  3. 场景:系统绝对并发量上来了,并且可以抽象出单独的业务模块。
  4. 分析:到这一步,基本上就可以服务化了。例如,随着业务的发展一些公用的配置表、字典表等越来越多,这时可以将这些表拆到单独的库中,甚至可以服务化。再有,随着业务的发展孵化出了一套业务模式,这时可以将相关的表拆到单独的库中,甚至可以服务化。

4、垂直分表

  1. 概念:以字段为依据,按照字段的活跃性,将中字段拆到不同的(主表和扩展表)中。
  2. 结果:
    • 每个结构都不一样;
    • 每个数据也不一样,一般来说,每个表的字段至少有一列交集,一般是主键,用于关联数据;
    • 所有并集是全量数据;
  3. 场景:系统绝对并发量并没有上来,表的记录并不多,但是字段多,并且热点数据和非热点数据在一起,单行数据所需的存储空间较大。以至于数据库缓存的数据行减少,查询时会去读磁盘数据产生大量的随机读IO,产生IO瓶颈。
  4. 分析:可以用列表页和详情页来帮助理解。垂直分表的拆分原则是将热点数据(可能会冗余经常一起查询的数据)放在一起作为主表,非热点数据放在一起作为扩展表。这样更多的热点数据就能被缓存下来,进而减少了随机读IO。拆了之后,要想获得全部数据就需要关联两个表来取数据。但记住,千万别用join,因为join不仅会增加CPU负担并且会讲两个表耦合在一起(必须在一个数据库实例上)。关联数据,应该在业务Service层做文章,分别获取主表和扩展表数据然后用关联字段关联得到全部数据。

三、分库分表工具

  1. sharding-sphere:jar,前身是sharding-jdbc;
  2. TDDL:jar,Taobao Distribute Data Layer;
  3. Mycat:中间件。

注:工具的利弊,请自行调研,官网和社区优先。

四、分库分表步骤

  根据容量(当前容量和增长量)评估分库或分表个数 -> 选key(均匀)-> 分表规则(hash或range等)-> 执行(一般双写)-> 扩容问题(尽量减少数据的移动)。

五、分库分表问题

1、非partition key的查询问题(水平分库分表,拆分策略为常用的hash法)

  1. 端上除了partition key只有一个非partition key作为条件查询
    • 映射法
    • 基因法

    注:写入时,基因法生成user_id,如图。关于xbit基因,例如要分8张表,23=8,故x取3,即3bit基因。根据user_id查询时可直接取模路由到对应的分库或分表。根据user_name查询时,先通过user_name_code生成函数生成user_name_code再对其取模路由到对应的分库或分表。id生成常用snowflake算法

  2. 端上除了partition key不止一个非partition key作为条件查询
    • 映射法
    • 冗余法

    注:按照order_id或buyer_id查询时路由到db_o_buyer库中,按照seller_id查询时路由到db_o_seller库中。感觉有点本末倒置!有其他好的办法吗?改变技术栈呢?

  3. 后台除了partition key还有各种非partition key组合条件查询
    • NoSQL法
    • 冗余法

注:思考下范围法拆分,该怎么解决。

2、非partition key跨库跨表分页查询问题(水平分库分表,拆分策略为常用的hash法)

注:用NoSQL法解决(ES等)。

3、扩容问题(水平分库分表,拆分策略为常用的hash法)

  1. 水平扩容库(升级从库法)

注:扩容是成倍的。

  1. 水平扩容表(双写迁移法)

第一步:(同步双写)应用配置双写,部署; 第二步:(同步双写)将老库中的老数据复制到新库中; 第三步:(同步双写)以老库为准校对新库中的老数据; 第四步:(同步双写)应用去掉双写,部署;

注:双写是通用方案;思考下范围法拆分,该怎么解决。

六、分库分表总结

  1. 分库分表,首先得知道瓶颈在哪里,然后才能合理地拆分(分库还是分表?水平还是垂直?分几个?)。且不可为了分库分表而拆分。
  2. 选key很重要,既要考虑到拆分均匀,也要考虑到非partition key的查询。
  3. 只要能满足需求,拆分规则越简单越好。

七、分库分表示例

示例GitHub地址:https://github.com/lc-study/study-sharding.git

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Crossin的编程教室

一道大数据习题

现在到处都说“大数据”,我也跟着标题党一下。今天要说的这个,还算不上大数据,只能说跟以前的习题相比,数据量略大了一点。 前阵子我们做了个抓取热映电影的程序。有个...

2676
来自专栏腾讯移动品质中心TMQ的专栏

测试建模兵器谱

0.引子 有人的地方就有江湖,有测试的地方就有建模。 每个产品都是一片江湖,每一次迭代就是一场武林大会,而一个个的需求,就是一封封战书。 测试同学在面对复杂的...

2386
来自专栏CDA数据分析师

分享 | 8条数据清洗经验,收藏备用!

文 | Philip Guo 来自Chaoslog 平时习惯了在某些特定的数据集合上做实验,简单的tokenization、预处理等步骤就足够了。但是在数据...

1875
来自专栏钱曙光的专栏

一周极客热文:程序员必须知道的10大基础实用算法及其讲解

程序员必须知道的10大基础实用算法及其讲解,包括: 快速排序算法; 堆排序算法(Heapsort):是指利用堆这种数据结构所设计的一种排序算法; 归并排序(Me...

1807
来自专栏吴伟祥

学习数据结构的原因&方法 原

511
来自专栏CSDN技术头条

Apache Spark 1.6发布

今天我们非常高兴能够发布Apache Spark 1.6,通过该版本,Spark在社区开发中达到一个重要的里程碑:Spark源码贡献者的数据已经超过1000人,...

1838
来自专栏吉浦迅科技

[教程] 系列报道——PyOpenCL介绍

OpenCL一直被软件工程师诟病说很难学习,但我觉得这是不公平的。OpenCL API的通用性,导致了它比较繁琐。一旦你写了一些OpenCL代码,你就会意识到很...

4757
来自专栏好好学java的技术栈

“365算法每日学计划”:03打卡-贪心算法

自从开始做公众号开始,就一直在思考,怎么把算法的训练做好,因为思海同学在算法这方面的掌握确实还不够。因此,我现在想做一个“365算法每日学计划”。

1602
来自专栏数据结构与算法

1068 乌龟棋 2010年NOIP全国联赛提高组

1068 乌龟棋 2010年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运...

3208
来自专栏PPV课数据科学社区

【可视化】Excel制作INFOGRAPHIC

最近在重新整理日报,周报,月报的数据展现形式,越发觉得一份数据如何展现对于我们数据分析师的受众而言是非常重要的,数据是一种艺术,其原因之一在于如何把数字通过我们...

2474

扫描关注云+社区