前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >RNA-seq分析简洁版

RNA-seq分析简洁版

作者头像
Y大宽
发布2018-09-10 11:57:15
2.6K0
发布2018-09-10 11:57:15
举报
文章被收录于专栏:Y大宽Y大宽
  • 前面RNA-seq分析:从软件安装到富集分析部分已经把转录组全部流程走完了一遍,这次利用RNA-seq(2)-2:下载数据中下载的肝癌数据进行分析,不在赘述细节,所以有看细节的还是请去这里
  • 这部分主要是代码和部分结果图,但进行了部分修正,比如KEGG 可视化部分,用了前clusterprofiler部分的结果,所以这部分不包括Gage包。
  • 所以从质量比对开始进行
-----------------------------------------------------------------

3 sra到fastq格式转换并进行质量控制

3.1 数据解压:用samtools中的fastq-dump将sra格式转为fastq格式
  • 备注:用时5个小时
代码语言:javascript
复制
for ((i=2;i<=5;i++));do fastq-dump --gzip --split-3 -A SRR31621$i.sra -O .;done
3.2 用fastqc进行质量控制
代码语言:javascript
复制
#将所有的数据进行质控,得到zip的压缩文件和html文件
fastqc -o .  *.fastq.gz
3.3 3 质控结果解读(为保持紧凑,只放一张图)

SRR316214.png

4 下载参考基因组及基因注释

RNA-seq(4):下载参考基因组及基因注释部分已经下载

5 序列比对:Hisat2

5.1 开始比对:用hisat2,得到SAM文件(5个小时)
  • 我的fastq文件在/mnt/f/rna_seq/data
  • 我的reference在/mnt/f/rna_seq/data/reference
  • 我的index在/mnt/f/rna_seq/data/reference/index/hg19
  • 比对后得到的bam文件会存放在/mnt/f/rna_seq/aligned
代码语言:javascript
复制
 source ~/miniconda3/bin/activate
(base) kelly@DESKTOP-MRA1M1F:/mnt/f/rna_seq/data$ cd ..
(base) kelly@DESKTOP-MRA1M1F:/mnt/f/rna_seq$
for ((i=2;i<=5;i++));do hisat2 -t -x /mnt/f/rna_seq/data/reference/index/hg19/genome -1 /mnt/f/rna_seq/data/SRR31621${i}.sra_1.fastq.gz -2 /mnt/f/rna_seq/data/SRR31621${i}.sra_2.fastq.gz -S SRR31621${i}.sam ;done
代码语言:javascript
复制
(base) kelly@DESKTOP-MRA1M1F:/mnt/f/rna_seq$ for ((i=2;i<=5;i++));do hisat2 -t -x /mnt/f/rna_seq/data/reference/index/hg19/genome -1 /mnt/f/rna_seq/data/SRR31621${i}.sra_1.fastq.gz -2 /mnt/f/rna_seq/data/SRR31621${i}.sra_2.fastq.gz -S SRR31621${i}.sam ;done
Time loading forward index: 00:00:05
Time loading reference: 00:00:01
Multiseed full-index search: 02:11:39
101339131 reads; of these:
  101339131 (100.00%) were paired; of these:
    7840870 (7.74%) aligned concordantly 0 times
    87196406 (86.04%) aligned concordantly exactly 1 time
    6301855 (6.22%) aligned concordantly >1 times
    ----
    7840870 pairs aligned concordantly 0 times; of these:
      333400 (4.25%) aligned discordantly 1 time
    ----
    7507470 pairs aligned 0 times concordantly or discordantly; of these:
      15014940 mates make up the pairs; of these:
        8711709 (58.02%) aligned 0 times
        5441734 (36.24%) aligned exactly 1 time
        861497 (5.74%) aligned >1 times
95.70% overall alignment rate
5.2 SAM文件转换为BAM文件,并对bam文件进行sort,最后建立索引:SAMtools
Sam 文件转换为bam格式(用时1.5hrs)
代码语言:javascript
复制
(base) kelly@DESKTOP-MRA1M1F:/mnt/f/rna_seq/aligned$ for ((i=2;i<=5;i++));do samtools view -S /mnt/f/rna_seq/SRR31621${i}.sam -b > SRR31621${i}.bam;done
对bam文件进行排序,默认染色体位置(用时1.5hrs)
代码语言:javascript
复制
for ((i=2;i<=5;i++));do samtools sort SRR31621${i}.bam
-o SRR31621${i}_sorted.bam;done
建立索引(用时40mins)
代码语言:javascript
复制
for ((i=2;i<=5;i++));do samtools index SRR31621${i}_sorted.bam;done

6 reads计数,合并矩阵并进行注释

6.1 bam文件按reads name排序(用时1h)
代码语言:javascript
复制
for ((i=2;i<=5;i++));do samtools sort -n SRR31621${i}.b
am -o SRR31621${i}_nsorted.bam;done
6.2 2 reads计数,得到表达矩阵htseq-count(用时很久很久,久到不忍写,8hrs)

注释文件如果已经解压,则不再需要重复

代码语言:javascript
复制
cd ../data/matrix
gunzip /mnt/f/rna_seq/data/reference/annotation/hg19/gencode.v19.annotation.gt.gz && rm -rf gencode.v19.annotation.gtf.gz
for ((i=2;i<=5;i++));do htseq-count -r name -f bam /mnt/f/rna_seq/aligned/SRR31621${i}_nsorted.bam /mnt/f/rna_seq/data/reference/annotation/hg19/gencode.v19.an
notation.gtf > SRR31621${i}.count; done
代码语言:javascript
复制
ls -al *.count
-rwxrwxrwx 1 root root 1197426 Aug  7 16:25 SRR316212.count
-rwxrwxrwx 1 root root 1186189 Aug  7 17:16 SRR316213.count
-rwxrwxrwx 1 root root 1200305 Aug  7 22:51 SRR316214.count
-rwxrwxrwx 1 root root 1187596 Aug  7 23:32 SRR316215.count
6.3 3 合并表达矩阵并进行基因名注释(R中进行)

Tumor:SRR316214,SRR316215

Adjacent Normal Liver:SRR316212,SRR316213

代码语言:javascript
复制
setwd("F:/rna_seq/data/matrix")
options(stringsAsFactors = FALSE)
control1<-read.table("SRR316212.count",sep = "\t",col.names = c("gene_id","control1"))
control2<-read.table("SRR316213.count",sep = "\t",col.names = c("gene_id","control2"))
treat1<-read.table("SRR316214.count",sep = "\t",col.names = c("gene_id","treat1"))
treat2<-read.table("SRR316215.count",sep = "\t",col.names = c("gene_id","treat2"))
raw_count <- merge(merge(control1, control2, by="gene_id"), merge(treat1, treat2, by="gene_id"))
head(raw_count)
raw_count_filt <- raw_count[-1:-5,]
ENSEMBL <- gsub("\\.\\d*", "", raw_count_filt$gene_id) 
row.names(raw_count_filt) <- ENSEMBL
head(raw_count_filt)
代码语言:javascript
复制
> head(raw_count_filt)
                           gene_id control1 control2 treat2.x treat2.y
ENSG00000000003 ENSG00000000003.10     4004      781      756      756
ENSG00000000005  ENSG00000000005.5        1        0        0        0
ENSG00000000419  ENSG00000000419.8      776      140      165      165
ENSG00000000457  ENSG00000000457.9      624      144      240      240
ENSG00000000460 ENSG00000000460.12      260       52      105      105
ENSG00000000938  ENSG00000000938.8      161       59       16       16

7 DEseq2筛选差异表达基因并注释

这次我换了Annotation包进行注释

7.1 载入数据(countData和colData)

代码语言:javascript
复制
# 这一步很关键,要明白condition这里是因子,不是样本名称;小鼠数据有对照组和处理组,各两个重复
condition <- factor(c(rep("control",2),rep("treat",2)), levels = c("control","treat"))
condition
colData <- data.frame(row.names=colnames(mycounts), condition)
代码语言:javascript
复制
> colData
         condition
control1   control
control2   control
treat1       treat
treat2       treat

7.2 构建dds对象,开始DESeq流程

代码语言:javascript
复制
dds <- DESeqDataSetFromMatrix(countData=mycounts, 
                              colData=colData, 
                              design= ~ condition)
dds = DESeq(dds)

7.3 总体结果查看

接下来,我们要查看treat versus control的总体结果,并根据p-value进行重新排序。利用summary命令统计显示一共多少个genes上调和下调(FDR0.1)

代码语言:javascript
复制
res = results(dds, contrast=c("condition", "control", "treat"))
res = res[order(res$pvalue),]
head(res)
summary(res)
write.csv(res,file="All_results.csv")
table(res$padj<0.01)
代码语言:javascript
复制
> summary(res)
out of 30981 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)     : 3928, 13% 
LFC < 0 (down)   : 3283, 11% 
outliers [1]     : 0, 0% 
low counts [2]   : 10317, 33% 
(mean count < 2)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
> table(res$padj<0.01)
FALSE  TRUE 
16192  4472

可见,上调基因和下调的数目都很多,padj<0.01的有4472,即使padj<0.001的也有3089个。

7.4 提取差异表达genes(DEGs)

先看下padj(p值经过多重校验校正后的值)小于0.01,表达倍数取以2为对数后大于1或者小于-1的差异表达基因。代码如下

代码语言:javascript
复制
diff_gene_deseq2 <-subset(res, padj < 0.01 & abs(log2FoldChange) > 1)
dim(diff_gene_deseq2)
head(diff_gene_deseq2)
write.csv(diff_gene_deseq2,file= "HCC_DEG_0.05_2.csv")
代码语言:javascript
复制
> dim(diff_gene_deseq2)
[1] 3780    6
> head(diff_gene_deseq2)
log2 fold change (MLE): condition control vs treat 
Wald test p-value: condition control vs treat 
DataFrame with 6 rows and 6 columns
                 baseMean log2FoldChange     lfcSE      stat        pvalue          padj
                <numeric>      <numeric> <numeric> <numeric>     <numeric>     <numeric>
ENSG00000130649 78059.342       7.190959 0.2110024  34.07998 1.460506e-254 3.017990e-250
ENSG00000268925  5666.055       7.534595 0.2573299  29.27991 1.869559e-188 1.931628e-184
ENSG00000105697  8791.483       6.611356 0.2338215  28.27523 6.970959e-176 4.801597e-172
ENSG00000167244  8988.099       6.767261 0.2582403  26.20528 2.313301e-151 1.195051e-147
ENSG00000162366  4037.960      -7.076854 0.2704122 -26.17062 5.742578e-151 2.373293e-147
ENSG00000169715  3803.597       6.238596 0.2403373  25.95767 1.489813e-148 5.130914e-145

把padj<0.001,|log2FC|>1有2938个

8 探索分析结果:Data visulization

代码语言:javascript
复制
#MA plot
plotMA(res,ylim=c(-2,2))
topGene <- rownames(res)[which.min(res$padj)]
with(res[topGene, ], {
  points(baseMean, log2FoldChange, col="dodgerblue", cex=6, lwd=2)
  text(baseMean, log2FoldChange, topGene, pos=2, col="dodgerblue")
})

#shirnked
res_order<-res[order(row.names(res)),]
res = res_order
res.shrink <- lfcShrink(dds, contrast = c("condition","treat","control"), res=res)
plotMA(res.shrink, ylim = c(-5,5))
topGene <- rownames(res)[which.min(res$padj)]
with(res[topGene, ], {
  points(baseMean, log2FoldChange, col="dodgerblue", cex=2, lwd=2)
  text(baseMean, log2FoldChange, topGene, pos=2, col="dodgerblue")
})
代码语言:javascript
复制
#identify
idx <- identify(res$baseMean, res$log2FoldChange)
rownames(res)[idx]
#plotcounts
plotCounts(dds, gene=which.min(res$padj), intgroup="condition", returnData=TRUE)
plotCounts(dds, gene="ENSG00000130649", intgroup="condition", returnData=FALSE)
#boxplot
plotCounts(dds, gene="ENSG00000130649", intgroup="condition", returnData=TRUE) %>% 
  ggplot(aes(condition, count)) + geom_boxplot(aes(fill=condition)) + scale_y_log10() + ggtitle("CYP2E1")
#pointplot
d <- plotCounts(dds, gene="ENSG00000130649", intgroup="condition", returnData=TRUE)
ggplot(d, aes(x=condition, y=count)) + 
  geom_point(aes(color= condition),size= 4, position=position_jitter(w=0.5,h=0)) + 
  scale_y_log10(breaks=c(25,100,400))+ ggtitle("CYP2E1")

##3最小padj
d <- plotCounts(dds, gene=which.min(res$padj), intgroup="condition", 
                returnData=TRUE)
ggplot(d, aes(x=condition, y=count)) + 
  geom_point(position=position_jitter(w=0.1,h=0)) + 
  scale_y_log10(breaks=c(25,100,400))
代码语言:javascript
复制
#PCA
vsdata <- vst(dds, blind=FALSE)
plotPCA(vsdata, intgroup="condition")
#beatifule pca plot
pcaData <- plotPCA(vsdata, intgroup=c("condition"), returnData=TRUE)
percentVar <- round(100 * attr(pcaData, "percentVar"))
ggplot(pcaData, aes(PC1, PC2, color=condition, shape=condition)) +
  geom_point(size=3) +
  xlab(paste0("PC1: ",percentVar[1],"% variance")) +
  ylab(paste0("PC2: ",percentVar[2],"% variance")) + 
  coord_fixed()
代码语言:javascript
复制
library("pheatmap")
select<-order(rowMeans(counts(dds, normalized = TRUE)),
              decreasing = TRUE)[1:20]
df <- as.data.frame(colData(dds)[,c("condition","sizeFactor")])
# this gives log2(n + 1)
ntd <- normTransform(dds)
pheatmap(assay(ntd)[select,], cluster_rows=FALSE, show_rownames=FALSE,
         cluster_cols=FALSE, annotation_col=df)
#vsd
vsd <- vst(dds, blind=FALSE)
pheatmap(assay(vsd)[select,], cluster_rows=FALSE, show_rownames=FALSE,
         cluster_cols=FALSE, annotation_col=df)
##sample to sample heatmap
sampleDists <- dist(t(assay(vsd)))
library("RColorBrewer")
sampleDistMatrix <- as.matrix(sampleDists)
rownames(sampleDistMatrix) <- paste(vsd$condition, vsd$type, sep="-")
colnames(sampleDistMatrix) <- NULL
colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255)
pheatmap(sampleDistMatrix,
         clustering_distance_rows=sampleDists,
         clustering_distance_cols=sampleDists,
         col=colors)

这部分主要结果部分的一些可视化,具体参考详细的部分即可,只放一张图

Rplot.jpeg

9 DEGs的富集分析(功能注释)ClusterProfiler包

代码语言:javascript
复制
##enrichment analysis using clusterprofiler package created by yuguangchuang
library(clusterProfiler)
library(DOSE)
library(stringr)
library(org.Hs.eg.db)
#get the ENTREZID for the next analysis
sig.gene= diff_gene_deseq2
head(sig.gene)
gene<-rownames(sig.gene)
head(gene)
gene.df<-bitr(gene, fromType = "ENSEMBL", 
              toType = c("SYMBOL","ENTREZID"),
              OrgDb = org.Hs.eg.db)

head(gene.df)
代码语言:javascript
复制
> head(gene.df)
          ENSEMBL   SYMBOL ENTREZID
1 ENSG00000130649   CYP2E1     1571
3 ENSG00000105697     HAMP    57817
4 ENSG00000167244     IGF2     3481
5 ENSG00000162366 PDZK1IP1    10158
6 ENSG00000169715     MT1E     4493
7 ENSG00000074276    CDHR2    54825

GO enrichment

代码语言:javascript
复制
#Go enrichment
ego_cc<-enrichGO(gene       = gene.df$ENSEMBL,
                 OrgDb      = org.Hs.eg.db,
                 keyType    = 'ENSEMBL',
                 ont        = "CC",
                 pAdjustMethod = "BH",
                 pvalueCutoff = 0.01,
                 qvalueCutoff = 0.05)
ego_bp<-enrichGO(gene       = gene.df$ENSEMBL,
                 OrgDb      = org.Hs.eg.db,
                 keyType    = 'ENSEMBL',
                 ont        = "BP",
                 pAdjustMethod = "BH",
                 pvalueCutoff = 0.01,
                 qvalueCutoff = 0.05)
barplot(ego_bp,showCategory = 18,title="The GO_BP enrichment analysis of all DEGs ")+ 
  scale_size(range=c(2, 12))+
  scale_x_discrete(labels=function(ego_bp) str_wrap(ego_bp,width = 25))

KEGG enrichment

代码语言:javascript
复制
library(stringr)
kk<-enrichKEGG(gene      =gene.df$ENTREZID,
               organism = 'hsa',
               pvalueCutoff = 0.05)
代码语言:javascript
复制
> kk[1:30]
               ID                                          Description GeneRatio  BgRatio
hsa04610 hsa04610                  Complement and coagulation cascades   38/1407  79/7431
hsa04933 hsa04933 AGE-RAGE signaling pathway in diabetic complications   40/1407  99/7431
hsa00071 hsa00071                               Fatty acid degradation   23/1407  44/7431
hsa04974 hsa04974                     Protein digestion and absorption   35/1407  90/7431
hsa05146 hsa05146                                           Amoebiasis   36/1407  96/7431
hsa04978 hsa04978                                   Mineral absorption   23/1407  51/7431
hsa04115 hsa04115                                p53 signaling pathway   29/1407  72/7431
hsa05144 hsa05144                                              Malaria   22/1407  49/7431
hsa00982 hsa00982                    Drug metabolism - cytochrome P450   28/1407  72/7431
hsa00980 hsa00980         Metabolism of xenobiotics by cytochrome P450   29/1407  76/7431
hsa03320 hsa03320                               PPAR signaling pathway   28/1407  74/7431
hsa05204 hsa05204                              Chemical carcinogenesis   30/1407  82/7431
代码语言:javascript
复制
mykegg<-barplot(kk,showCategory = 20, title="The KEGG enrichment analysis of all DEGs")+
  scale_size(range=c(2, 12))+
  scale_x_discrete(labels=function(kk) str_wrap(kk,width = 25))
 dotplot(kk,showCategory = 20, title="The KEGG enrichment analysis of all DEGs")+
  scale_size(range=c(2, 12))+
  scale_x_discrete(labels=function(kk) str_wrap(kk,width = 25))

用cowplot拼起来

代码语言:javascript
复制
library(cowplot)
plot_grid(mygobp,mykegg,labels = c("A","B"),align = "h")

Rplot01.jpeg

10 KEGG信号通路的可视化(pathview包)

备注,前面详细部分用gageData重新进行了富集分析,这部分直接调用ClusterProfiler包的富集结果
  • 选取enrichKEGG结果pvalue排名第一的hsa4610:Complement and coagulation cascades和排名第7的hsa04115:p53 signaling pathway
代码语言:javascript
复制
library("pathview")
foldchanges = sig.gene$log2FoldChange
names(foldchanges)= gene.df$ENTREZID
head(foldchanges)
pathview(gene.data = foldchanges, pathway.id = "hsa04610", species="hsa")
------------------------------------------------------------------------------
hsa4610:Complement and coagulation cascades

hsa04610.pathview.png

------------------------------------------------------------------------------
hsa04115:p53 signaling pathway

hsa04115.pathview.png

11 把counts结果,clusterprofiler部分的symbol name 和DEGs全部合并到一个表格

备注,这部分的主要问题是没用可以merge用的ID,先看下
代码语言:javascript
复制
> head(mycounts)
                control1 control2 treat1 treat2
ENSG00000000003     4004      781   4229    756
ENSG00000000005        1        0      0      0
ENSG00000000419      776      140   1180    165
ENSG00000000457      624      144   1271    240
ENSG00000000460      260       52    610    105
ENSG00000000938      161       59     57     16
代码语言:javascript
复制
> head(gene.df)
          ENSEMBL   SYMBOL ENTREZID
1 ENSG00000130649   CYP2E1     1571
3 ENSG00000105697     HAMP    57817
4 ENSG00000167244     IGF2     3481
5 ENSG00000162366 PDZK1IP1    10158
6 ENSG00000169715     MT1E     4493
7 ENSG00000074276    CDHR2    54825
代码语言:javascript
复制
> head(sig.gene)
log2 fold change (MLE): condition control vs treat 
Wald test p-value: condition control vs treat 
DataFrame with 6 rows and 6 columns
                  ENSEMBL log2FoldChange     lfcSE      stat        pvalue          padj
                <numeric>      <numeric> <numeric> <numeric>     <numeric>     <numeric>
ENSG00000130649 78059.342       7.190959 0.2110024  34.07998 1.460506e-254 3.017990e-250
ENSG00000268925  5666.055       7.534595 0.2573299  29.27991 1.869559e-188 1.931628e-184
ENSG00000105697  8791.483       6.611356 0.2338215  28.27523 6.970959e-176 4.801597e-172
ENSG00000167244  8988.099       6.767261 0.2582403  26.20528 2.313301e-151 1.195051e-147
ENSG00000162366  4037.960      -7.076854 0.2704122 -26.17062 5.742578e-151 2.373293e-147
ENSG00000169715  3803.597       6.238596 0.2403373  25.95767 1.489813e-148 5.130914e-145

所以执行以下代码:

代码语言:javascript
复制
head(sig.gene)
head(gene.df)
ENSEMBL<-rownames(sig.gene)
sig.gene<-cbind(ENSEMBL, sig.gene)
colnames(sig.gene)[1]<-c("ENSEMBL")

head(mycounts)
ENSEMBL<-rownames(mycounts)
mycounts<-cbind(ENSEMBL, mycounts)
colnames(mycounts)[1]<-c("ENSEMBL")

merge1<-merge(sig.gene,mycounts,by="ENSEMBL")
merge2<-merge(merge1,gene.df, by="ENSEMBL")
head(merge2)
write.csv(DEG_symbole,file="hcc_DEGs_last_results.csv")
结果如下:
代码语言:javascript
复制
> head(merge2)
DataFrame with 6 rows and 13 columns
          ENSEMBL   baseMean log2FoldChange     lfcSE      stat       pvalue         padj  control1  control2    treat1    treat2
      <character>  <numeric>      <numeric> <numeric> <numeric>    <numeric>    <numeric> <integer> <integer> <integer> <integer>
1 ENSG00000000938   70.51956       2.169409 0.4610591  4.705274 2.535248e-06 2.632581e-05       161        59        57        16
2 ENSG00000001460   77.93853      -1.496365 0.4247974 -3.522537 4.274371e-04 2.517116e-03        68        18       268        68
3 ENSG00000001561  382.90350      -1.466940 0.3397462 -4.317751 1.576269e-05 1.347065e-04       416        69      1780       227
4 ENSG00000001626   70.41775       4.713865 0.5812437  8.109965 5.063455e-16 1.944819e-14       226        61        16         1
5 ENSG00000001630  165.86393      -2.283850 0.4094980 -5.577194 2.444286e-08 3.665365e-07        84        28       442       207
6 ENSG00000002549 1683.37557       1.519578 0.2216429  6.855972 7.082930e-12 1.708432e-10      4166      1104      2171       481
       SYMBOL    ENTREZID
  <character> <character>
1         FGR        2268
2       STPG1       90529
3       ENPP4       22875
4        CFTR        1080
5     CYP51A1        1595
6        LAP3       51056

至此,这部分结果可以用来做其他很多下游分析了。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018.08.08 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 3 sra到fastq格式转换并进行质量控制
  • 4 下载参考基因组及基因注释
  • 5 序列比对:Hisat2
  • 6 reads计数,合并矩阵并进行注释
  • 7 DEseq2筛选差异表达基因并注释
    • 7.1 载入数据(countData和colData)
      • 7.2 构建dds对象,开始DESeq流程
        • 7.3 总体结果查看
          • 7.4 提取差异表达genes(DEGs)
          • 8 探索分析结果:Data visulization
          • 9 DEGs的富集分析(功能注释)ClusterProfiler包
          • 10 KEGG信号通路的可视化(pathview包)
          • 11 把counts结果,clusterprofiler部分的symbol name 和DEGs全部合并到一个表格
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档