前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数据结构 第2讲 算法复杂性

数据结构 第2讲 算法复杂性

作者头像
rainchxy
发布2018-09-13 15:54:42
8490
发布2018-09-13 15:54:42
举报
文章被收录于专栏:趣学算法趣学算法趣学算法

该内容来源于本人著作《趣学算法》在线章节:http://www.epubit.com.cn/book/details/4825

如果说数学是皇冠上的一颗明珠,那么算法就是这颗明珠上的光芒,算法让这颗明珠更加熠熠生辉,为科技进步和社会发展照亮了前进的路。数学是美学,算法是艺术。走进算法的人,才能体会它的魅力。

多年来,我有一个梦想,希望每一位提到算法的人,不再立即紧皱眉头,脑海闪现枯燥的公式、冗长的代码;希望每一位阅读和使用算法的人,体会到算法之美,像躺在法国普罗旺斯小镇的长椅上,呷一口红酒,闭上眼睛,体会舌尖上的美味,感受鼻腔中满溢的薰衣草的芳香……

1.1 打开算法之门

瑞士著名的科学家N.Wirth教授曾提出:数据结构+算法=程序。

数据结构是程序的骨架,算法是程序的灵魂。

在我们的生活中,算法无处不在。我们每天早上起来,刷牙、洗脸、吃早餐,都在算着时间,以免上班或上课迟到;去超市购物,在资金有限的情况下,考虑先买什么、后买什么,算算是否超额;在家中做饭,用什么食材、调料,做法、步骤,还要品尝一下咸淡,看看是否做熟。所以,不要说你不懂算法,其实你每天都在用!

但是对计算机专业算法,很多人都有困惑:“I can understand, but I can’tuse!”,我能看懂,但不会用!就像参观莫高窟的壁画,看到它、感受它,却无法走进。我们正需要一把打开算法之门的钥匙,就如陶渊明《桃花源记》中的“初极狭,才通人。复行数十步,豁然开朗。”

1.2 妙不可言——算法复杂性

我们首先看一道某跨国公司的招聘试题。

写一个算法,求下面序列之和:

−1,1,−1,1,…,(−1)n

当你看到这个题目时,你会怎么想?for语句?while循环?

先看算法1-1:

//算法1-1 
sum=0;
for(i=1; i<=n; i++)
{
  sum=sum+(-1)^n;
}

这段代码可以实现求和运算,但是为什么不这样算?!

再看算法1-2:

//算法1-2
if(n%2==0)  //判断n是不是偶数,%表示求余数
  sum =0;
else
  sum=-1;

有的人看到这个代码后恍然大悟,原来可以这样啊?这不就是数学家高斯使用的算法吗?

一共50对数,每对之和均为101,那么总和为:

(1+100)×50=5050

1787年,10岁的高斯用了很短的时间算出了结果,而其他孩子却要算很长时间。

可以看出,算法1-1需要运行n+1次,如果n=100 00,就要运行100 01次,而算法1-2仅仅需要运行1次!是不是有很大差别?

高斯的方法我也知道,但遇到类似的题还是……我用的笨办法也是算法吗?

答:是算法。

算法是指对特定问题求解步骤的一种描述。

算法只是对问题求解方法的一种描述,它不依赖于任何一种语言,既可以用自然语言、程序设计语言(C、C++、Java、Python等)描述,也可以用流程图、框图来表示。一般为了更清楚地说明算法的本质,我们去除了计算机语言的语法规则和细节,采用“伪代码”来描述算法。“伪代码”介于自然语言和程序设计语言之间,它更符合人们的表达方式,容易理解,但不是严格的程序设计语言,如果要上机调试,需要转换成标准的计算机程序设计语言才能运行。

算法具有以下特性。

(1)有穷性:算法是由若干条指令组成的有穷序列,总是在执行若干次后结束,不可能永不停止。

(2)确定性:每条语句有确定的含义,无歧义。

(3)可行性:算法在当前环境条件下可以通过有限次运算实现。

(4)输入输出:有零个或多个输入,一个或多个输出。

算法1-2的确算得挺快的,但如何知道我写的算法好不好呢?

“好”算法的标准如下。

(1)正确性:正确性是指算法能够满足具体问题的需求,程序运行正常,无语法错误,能够通过典型的软件测试,达到预期的需求。

(2)易读性:算法遵循标识符命名规则,简洁易懂,注释语句恰当适量,方便自己和他人阅读,便于后期调试和修改。

(3)健壮性:算法对非法数据及操作有较好的反应和处理。例如,在学生信息管理系统中登记学生年龄时,若将21岁误输入为210岁,系统应该提示出错。

(4)高效性:高效性是指算法运行效率高,即算法运行所消耗的时间短。算法时间复杂度就是算法运行需要的时间。现代计算机一秒钟能计算数亿次,因此不能用秒来具体计算算法消耗的时间,由于相同配置的计算机进行一次基本运算的时间是一定的,我们可以用算法基本运算的执行次数来衡量算法的效率。因此,将算法基本运算的执行次数作为时间复杂度的衡量标准。

(5)低存储性:低存储性是指算法所需要的存储空间低。对于像手机、平板电脑这样的嵌入式设备,算法如果占用空间过大,则无法运行。算法占用的空间大小称为空间复杂度。

除了(1)~(3)中的基本标准外,我们对好的算法的评判标准就是高效率、低存储。

(1)~(3)中的标准都好办,但时间复杂度怎么算呢?

时间复杂度:算法运行需要的时间,一般将算法的执行次数作为时间复杂度的度量标准。

看算法1-3,并分析算法的时间复杂度。

//算法1-3 
sum=0;                     //运行1次
total=0;                   //运行1次
for(i=1; i<=n; i++)        //运行n次
{
  sum=sum+i;               //运行n次
  for(j=1; j<=n; j++)      //运行n*n次
    total=total+i*j;       //运行n*n次
}

把算法的所有语句的运行次数加起来:1+1+n+n+n×n+n×n,可以用一个函数T(n)表达:

T(n)=2n2+2n+2

当n足够大时,例如n=105时,T(n)=2×1010+2×105+2,我们可以看到算法运行时间主要取决于第一项,后面的甚至可以忽略不计。

用极限表示为:

,C为不等于0的常数

如果用时间复杂度的渐近上界表示,如图1-1所示。

从图1-1中可以看出,当n

\geqslant
\geqslant

n0时,T(n)

\leqslant
\leqslant

Cf (n),当n足够大时,T(n)和f (n)近似相等。因此,我们用О(f (n))来表示时间复杂度渐近上界,通常用这种表示法衡量算法时间复杂度。算法1-3的时间复杂度渐近上界为О(f (n))=О(n2),用极限表示为:

图1-1 渐近时间复杂度上界

还有渐近下界符号Ω(T(n)

\geqslant
\geqslant

Cf (n)),如图1-2所示。

图1-2 渐近时间复杂度下界

从图1-2可以看出,当n

\geqslant
\geqslant

n0时,T(n)

\geqslant
\geqslant

Cf (n),当n足够大时,T(n)和f (n)近似相等,因此,我们用Ω(f (n))来表示时间复杂度渐近下界。

渐近精确界符号Θ(C1f (n)

\leqslant
\leqslant

T(n)

\leqslant
\leqslant

C2f (n)),如图1-3所示。

从图1-3中可以看出,当n

\geqslant
\geqslant

n0时,C1f (n)

\leqslant
\leqslant

T(n)

\leqslant
\leqslant

C2f (n),当n足够大时,T(n)和f (n)近似相等。这种两边逼近的方式,更加精确近似,因此,用Θ (f (n))来表示时间复杂度渐近精确界。

图1-3 渐进时间复杂度精确界

我们通常使用时间复杂度渐近上界О(f (n))来表示时间复杂度。

看算法1-4,并分析算法的时间复杂度。

//算法1-4
i=1;              //运行1次
while(i<=n)     //可假设运行x次
{
  i=i*2;         //可假设运行x次
}

观察算法1-4,无法立即确定while 及i=i*2运行了多少次。这时可假设运行了x次,每次运算后i值为2,22,23,…,2x,当i=n时结束,即2x=n时结束,则x=log2n,那么算法1-4的运算次数为1+2log2n,时间复杂度渐近上界为О(f (n))=О(log2n)。

在算法分析中,渐近复杂度是对算法运行次数的粗略估计,大致反映问题规模增长趋势,而不必精确计算算法的运行时间。在计算渐近时间复杂度时,可以只考虑对算法运行时间贡献大的语句,而忽略那些运算次数少的语句,循环语句中处在循环内层的语句往往运行次数最多,即为对运行时间贡献最大的语句。例如在算法1-3中,total=total+i*j是对算法贡献最大的语句,只计算该语句的运行次数即可。

注意:不是每个算法都能直接计算运行次数。

例如算法1-5,在a[n]数组中顺序查找x,返回其下标i,如果没找到,则返回−1。

//算法1-5 
findx(int x)      //在a[n]数组中顺序查找x
{ 
for(i=0; i<n; i++)  
{
   if (a[i]==x)  
     return i;    //返回其下标i
   }
  return -1;
}

我们很难计算算法1-5中的程序到底执行了多少次,因为运行次数依赖于x在数组中的位置,如果第一个元素就是x,则执行1次(最好情况);如果最后一个元素是x,则执行n次(最坏情况);如果分布概率均等,则平均执行次数为(n+1)/2。

有些算法,如排序、查找、插入等算法,可以分为最好、最坏和平均情况分别求算法渐近复杂度,但我们考查一个算法通常考查最坏的情况,而不是考查最好的情况,最坏情况对衡量算法的好坏具有实际的意义。

我明白了,那空间复杂度应该就是算法占了多大存储空间了?

空间复杂度:算法占用的空间大小。一般将算法的辅助空间作为衡量空间复杂度的标准。

空间复杂度的本意是指算法在运行过程中占用了多少存储空间。算法占用的存储空间包括:

(1)输入/输出数据;

(2)算法本身;

(3)额外需要的辅助空间。

输入/输出数据占用的空间是必需的,算法本身占用的空间可以通过精简算法来缩减,但这个压缩的量是很小的,可以忽略不计。而在运行时使用的辅助变量所占用的空间,即辅助空间是衡量空间复杂度的关键因素。

看算法1-6,将两个数交换,并分析其空间复杂度。

//算法1-6 
swap(int x,int y)  //x与y交换 
{ 
  int temp;
  temp=x;  //temp为辅助空间 ①
  x=y;   ②
  y=temp; ③
}

两数的交换过程如图1-4所示。

图1-4 两数交换过程

图1-4中的步骤标号与算法1-6中的语句标号一一对应,该算法使用了一个辅助空间temp,空间复杂度为О(1)。

注意:递归算法中,每一次递推需要一个栈空间来保存调用记录,因此,空间复杂度需要计算递归栈的辅助空间。

看算法1-7,计算n的阶乘,并分析其空间复杂度。

//算法1-7 
fac(int n)  //计算n的阶乘
{  
  if(n<0)   //小于零的数无阶乘值
  {  
     printf("n<0,data error!"); 
     return -1;
  }
  else if(n= =0 || n= =1) 
           return 1; 
         else 
           return n*fac(n-1); 
}

阶乘是典型的递归调用问题,递归包括递推和回归。递推是将原问题不断分解成子问题,直到达到结束条件,返回最近子问题的解;然后逆向逐一回归,最终到达递推开始的原问题,返回原问题的解。

思考:试求5的阶乘,程序将怎样计算呢?

5的阶乘的递推和回归过程如图1-5和图1-6所示。

图1-5 5的阶乘递推过程

图1-6 5的阶乘回归过程

图1-5和图1-6的递推、回归过程是我们从逻辑思维上推理,用图的方式形象地表达出来的,但计算机内部是怎样处理的呢?计算机使用一种称为“栈”的数据结构,它类似于一个放一摞盘子的容器,每次从顶端放进去一个,拿出来的时候只能从顶端拿一个,不允许从中间插入或抽取,因此称为“后进先出”(last in first out)。

5的阶乘进栈过程如图1-7所示。

图1-7 5的阶乘进栈过程

5的阶乘出栈过程如图1-8所示。

图1-8 5的阶乘出栈过程

从图1-7和图1-8的进栈、出栈过程中,我们可以很清晰地看到,首先把子问题一步步地压进栈,直到得到返回值,再一步步地出栈,最终得到递归结果。在运算过程中,使用了n个栈空间作为辅助空间,因此阶乘递归算法的空间复杂度为О(n)。在算法1-7中,时间复杂度也为О(n),因为n的阶乘仅比n−1的阶乘多了一次乘法运算,fac(n)=n*fac(n−1)。如果用T(n)表示fac(n)的时间复杂度,可表示为:

T(n)= T(n−1)+1

                  = T(n−2)+1+1

                  ……

                  = T(1)+…+1+1

                  =n

1.3 美不胜收——魔鬼序列

趣味故事1-1:一棋盘的麦子

有一个古老的传说,有一位国王的女儿不幸落水,水中有很多鳄鱼,国王情急之下下令:“谁能把公主救上来,就把女儿嫁给他。”很多人纷纷退让,一个勇敢的小伙子挺身而出,冒着生命危险把公主救了上来,国王一看是个穷小子,想要反悔,说:“除了女儿,你要什么都可以。”小伙子说:“好吧,我只要一棋盘的麦子。您在第1个格子里放1粒麦子,在第2个格子里放2粒,在第3个格子里放4粒,在第4个格子里放8粒,以此类推,每一格子里的麦子粒数都是前一格的两倍。把这64个格子都放好了就行,我就要这么多。”国王听后哈哈大笑,觉得小伙子的要求很容易满足,满口答应。结果发现,把全国的麦子都拿来,也填不完这64格……国王无奈,只好把女儿嫁给了这个小伙子。

解析

棋盘上的64个格子究竟要放多少粒麦子?

把每一个放的麦子数加起来,总和为S,则:

S=1+21+22+23+…+263   ①

我们把式①等号两边都乘以2,等式仍然成立:

2S=21+22+23+…+263+264   ②

式 ②减去式①,则:

S=264−1 =18 446 744 073 709 551 615

据专家统计,每个麦粒的平均重量约41.9毫克,那么这些麦粒的总重量是:

   18 446 744 073 709 551 615×41.9=772 918 576 688 430 212 668.5(毫克)

                   ≈7729(亿吨)

全世界人口按60亿计算,每人可以分得128吨!

我们称这样的函数为爆炸增量函数,想一想,如果算法时间复杂度是О(2n) 会怎样?随着n的增长,这个算法会不会“爆掉”?经常见到有些算法调试没问题,运行一段也没问题,但关键的时候宕机(shutdown)。例如,在线考试系统,50个人考试没问题,100人考试也没问题,如果全校1万人考试就可能出现宕机。

注意:宕机就是死机,指电脑不能正常工作了,包括一切原因导致的死机。计算机主机出现意外故障而死机,一些服务器(如数据库)死锁,服务器的某些服务停止运行都可以称为宕机。

常见的算法时间复杂度有以下几类。

(1)常数阶。

常数阶算法运行的次数是一个常数,如5、20、100。常数阶算法时间复杂度通常用О(1)表示,例如算法1-6,它的运行次数为4,就是常数阶,用О(1)表示。

(2)多项式阶。

很多算法时间复杂度是多项式,通常用О(n)、О(n2)、О(n3)等表示。例如算法1-3就是多项式阶。

(3)指数阶。

指数阶时间复杂度运行效率极差,程序员往往像躲“恶魔”一样避开它。常见的有О(2n)、О(n!)、О(nn)等。使用这样的算法要慎重,例如趣味故事1-1。

(4)对数阶。

对数阶时间复杂度运行效率较高,常见的有О(logn)、О(nlogn)等,例如算法1-4。

常见时间复杂度函数曲线如图1-9所示。

图1-9 常见函数增量曲线

从图1-9中可以看出,指数阶增量随着x的增加而急剧增加,而对数阶增加缓慢。它们之间的关系为:

О(1)< О(logn)< О(n)< О(nlogn) < О(n2)< О(n3)< О(2n) < О(n!)< О(nn)

我们在设计算法时要注意算法复杂度增量的问题,尽量避免爆炸级增量。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017年09月11日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1.1 打开算法之门
  • 1.2 妙不可言——算法复杂性
  • 1.3 美不胜收——魔鬼序列
    • 趣味故事1-1:一棋盘的麦子
    相关产品与服务
    NLP 服务
    NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档