Python识别验证码!学会这步,百分之60的网站你基本都能识别了!

识别原理

我们采取一种有监督式学习的方法来识别验证码,包含以下几个步骤

图片处理 - 对图片进行降噪、二值化处理

切割图片 - 将图片切割成单个字符并保存

人工标注 - 对切割的字符图片进行人工标注,作为训练集

训练数据 - 用KNN算法训练数据

检测结果 - 用上一步的训练结果识别新的验证码

下面我们来逐一介绍一下每一步的过程,并给出具体的代码实现。

127是我们设定的阈值,像素值大于127被置成了0,小于127的被置成了255。处理后的图片变成了这样

接下来,我们应用高斯模糊对图片进行降噪。高斯模糊的本质是用高斯核和图像做卷积,代码如下

kernel = 1/16*np.array([[1,2,1], [2,4,2], [1,2,1]])

im_blur = cv2.filter2D(im_inv,-1,kernel)

降噪后的图片如下

可以看到一些颗粒化的噪声被平滑掉了。

降噪后,我们对图片再做一轮二值化处理

ret, im_res = cv2.threshold(im_blur,127,255,cv2.THRESH_BINARY)

现在图片变成了这样

好了,接下来,我们要开始切割图片了。

小编给大家推荐一个学习氛围超好的地方,python交流企鹅裙:【611+530+101】适合在校大学生,小白,想转行,想通过这个找工作的加入。裙里有大量学习资料,有大神解答交流问题,每晚都有免费的直播课程

切割图片

这一步是所有步骤里最复杂的一步。我们的目标是把最开始的图片切割成单个字符,并把每个字符保存成如下的灰度图

首先我们用opencv的findContours来提取轮廓

im2, contours, hierarchy = cv2.findContours(im_res, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

我们把提取的轮廓用矩形框起来,画出来是这样的

可以看到,每个字符都被检测出来了。

但这只是理想情况,很多时候,相邻字符有粘连的会被识别成同一个字符,比如像下面的情况

要处理这种情况,我们就要对上面的图片做进一步的分割。字符粘连会有下面几种情况,我们逐一来看下该怎么处理。

4个字符被识别成3个字符

这种情况,对粘连的字符轮廓,从中间进行分割,代码如下

result = []

for contour in contours:

x, y, w, h = cv2.boundingRect(contour)

if w == w_max: # w_max是所有contonur的宽度中最宽的值

box_left = np.int0([[x,y], [x+w/2,y], [x+w/2,y+h], [x,y+h]])

box_right = np.int0([[x+w/2,y], [x+w,y], [x+w,y+h], [x+w/2,y+h]])

result.append(box_left)

result.append(box_right)

else:

box = np.int0([[x,y], [x+w,y], [x+w,y+h], [x,y+h]])

result.append(box)

分割后,图片变成了这样

4个字符被识别成2个字符

4个字符被识别成2个字符有下面两种情况

对第一种情况,对于左右两个轮廓,从中间分割即可。对第二种情况,将包含了3个字符的轮廓在水平方向上三等分。具体代码如下

result = []

for contour in contours:

x, y, w, h = cv2.boundingRect(contour)

if w == w_max and w_max >= w_min * 2:

# 如果两个轮廓一个是另一个的宽度的2倍以上,我们认为这个轮廓就是包含3个字符的轮廓

box_left = np.int0([[x,y], [x+w/3,y], [x+w/3,y+h], [x,y+h]])

box_mid = np.int0([[x+w/3,y], [x+w*2/3,y], [x+w*2/3,y+h], [x+w/3,y+h]])

box_right = np.int0([[x+w*2/3,y], [x+w,y], [x+w,y+h], [x+w*2/3,y+h]])

result.append(box_left)

result.append(box_mid)

result.append(box_right)

elif w_max < w_min * 2:

# 如果两个轮廓,较宽的宽度小于较窄的2倍,我们认为这是两个包含2个字符的轮廓

box_left = np.int0([[x,y], [x+w/2,y], [x+w/2,y+h], [x,y+h]])

box_right = np.int0([[x+w/2,y], [x+w,y], [x+w,y+h], [x+w/2,y+h]])

result.append(box_left)

result.append(box_right)

else:

box = np.int0([[x,y], [x+w,y], [x+w,y+h], [x,y+h]])

result.append(box)

分割后的图片如下

4个字符被识别成1个字符

这种情况对轮廓在水平方向上做4等分即可,代码如下

result = []

contour = contours[0]

x, y, w, h = cv2.boundingRect(contour)

box0 = np.int0([[x,y], [x+w/4,y], [x+w/4,y+h], [x,y+h]])

box1 = np.int0([[x+w/4,y], [x+w*2/4,y], [x+w*2/4,y+h], [x+w/4,y+h]])

box2 = np.int0([[x+w*2/4,y], [x+w*3/4,y], [x+w*3/4,y+h], [x+w*2/4,y+h]])

box3 = np.int0([[x+w*3/4,y], [x+w,y], [x+w,y+h], [x+w*3/4,y+h]])

result.extend([box0, box1, box2, box3])

分割后的图片如下

对图片分割完成后,我们将分割后的单个字符的图片存成不同的图片文件,以便下一步做人工标注。存取字符图片的代码如下

for box in result:

cv2.drawContours(im, [box], 0, (0,0,255),2)

roi = im_res[box[0][1]:box[3][1], box[0][0]:box[1][0]]

roistd = cv2.resize(roi, (30, 30)) # 将字符图片统一调整为30x30的图片大小

timestamp = int(time.time() * 1e6) # 为防止文件重名,使用时间戳命名文件名

filename = "{}.jpg".format(timestamp)

filepath = os.path.join("char", filename)

cv2.imwrite(filepath, roistd)

字符图片保存在名为char的目录下面,这个目录里的文件大致是长这样的(文件名用时间戳命名,确保不会重名)

接下来,我们开始标注数据。

人工标注

这一步是所有步骤里最耗费体力的一步了。为节省时间,我们在程序里依次打开char目录中的每张图片,键盘输入字符名,程序读取键盘输入并将字符名保存在文件名里。代码如下

files = os.listdir("char")

for filename in files:

filename_ts = filename.split(".")[0]

patt = "label/{}_*".format(filename_ts)

saved_num = len(glob.glob(patt))

if saved_num == 1:

print("{} done".format(patt))

continue

filepath = os.path.join("char", filename)

im = cv2.imread(filepath)

cv2.imshow("image", im)

key = cv2.waitKey(0)

if key == 27:

sys.exit()

if key == 13:

continue

char = chr(key)

filename_ts = filename.split(".")[0]

outfile = "{}_{}.jpg".format(filename_ts, char)

outpath = os.path.join("label", outfile)

cv2.imwrite(outpath, im)

这里一共标注了大概800张字符图片,标注的结果存在名为label的目录下,目录下的文件是这样的(文件名由原文件名+标注名组成)

接下来,我们开始训练数据。

训练数据

首先,我们从label目录中加载已标注的数据

filenames = os.listdir("label")

samples = np.empty((0, 900))

labels = []

for filename in filenames:

filepath = os.path.join("label", filename)

label = filename.split(".")[0].split("_")[-1]

labels.append(label)

im = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE)

sample = im.reshape((1, 900)).astype(np.float32)

samples = np.append(samples, sample, 0)

samples = samples.astype(np.float32)

unique_labels = list(set(labels))

unique_ids = list(range(len(unique_labels)))

label_id_map = dict(zip(unique_labels, unique_ids))

id_label_map = dict(zip(unique_ids, unique_labels))

label_ids = list(map(lambda x: label_id_map[x], labels))

label_ids = np.array(label_ids).reshape((-1, 1)).astype(np.float32)

接下来,训练我们的模型

model = cv2.ml.KNearest_create()

model.train(samples, cv2.ml.ROW_SAMPLE, label_ids)

训练完,我们用这个模型来识别一下新的验证码。

检测结果

下面是我们要识别的验证码

对于每一个要识别的验证码,我们都需要对图片做降噪、二值化、分割的处理(代码和上面的一样,这里不再重复)。假设处理后的图片存在变量im_res中,分割后的字符的轮廓信息存在变量boxes中,识别验证码的代码如下

for box in boxes:

roi = im_res[box[0][1]:box[3][1], box[0][0]:box[1][0]]

roistd = cv2.resize(roi, (30, 30))

sample = roistd.reshape((1, 900)).astype(np.float32)

ret, results, neighbours, distances = model.findNearest(sample, k = 3)

label_id = int(results[0,0])

label = id_label_map[label_id]

print(label)

运行上面的代码,可以看到程序输出

y

y

4

e

图片中的验证码被成功地识别出来。

我们测试了下识别的准确率,取100张验证码图片(存在test目录下)进行识别,识别的准确率约为82%。看到有人说用神经网络识别验证码,准确率可以达到90%以上,下次有机会可以尝试一下。

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据文摘

三种可视化方法,手把手教你用R绘制地图网络图!

2274
来自专栏python读书笔记

python 数据分析基础 day19-使用statsmodels进行逻辑回归

今天是读《python数据分析基础》的第19天,读书笔记内容为使用statsmodels进行逻辑回归。 以下代码将按数据清洗、训练模型、得出测试集的预测值这三...

1.3K7
来自专栏程序员宝库

15 分钟破解网站验证码

作者: xiaochao 原文:http://www.bugcode.cn/break_captcha.html 概述 很多开发者都讨厌网站的验证码,特别是写网...

4097
来自专栏hadoop学习笔记

HanLP中的人名识别分析详解

分词:给定一个字的序列,找出最可能的标签序列(断句符号:[词尾]或[非词尾]构成的序列)。结巴分词目前就是利用BMES标签来分词的,B(开头),M(中间),E(...

1395
来自专栏企鹅号快讯

C+实现神经网络之四—神经网络的预测和输入输出的解析

在上一篇的结尾提到了神经网络的预测函数predict(),说道predict调用了forward函数并进行了输出的解析,输出我们看起来比较方便的值。 神经网络的...

1936
来自专栏逍遥剑客的游戏开发

Nebula3中的模型

1337
来自专栏PPV课数据科学社区

【学习】《R实战》读书笔记(第三章)

会是一种在于拓展视野、宏观思维、知识交流、提升生活的活动。PPV课R语言读书会以“学习、分享、进步”为宗旨,通过成员协作完成R语言专业书籍的精读和分享,达到学习...

3246
来自专栏数说戏聊

Tableau基础知识1.文件与数据1.1 Tableau文件类型2.制表3.绘图

1152
来自专栏北京马哥教育

Kmeans聚类代码实现及优化

云豆贴心提醒,本文阅读时间6分钟 这篇文章直接给出上次关于Kmeans聚类的篮球远动员数据分析案例,最后介绍Matplotlib包绘图的优化知识。 希望这篇文...

3195
来自专栏Small Code

【TensorFlow】理解 Estimators 和 Datasets

Google 在 2017 年 9 月 12 号的博文 Introduction to TensorFlow Datasets and Estimators 中...

1.3K8

扫码关注云+社区