【TensorFlow实战——笔记】第3章:TensorFlow第一步_TensorFlow的编译及安装

3.1 TensorFlow的编译及安装

安装有两种情况

  • 使用CPU,安装容易
  • 使用GPU,需要先安装CUDA和cuDNN,比较复杂

不管哪种情况,我们都推荐使用Anaconda作为Python的环境,因为可以避免大量的兼容性问题。

TensorFlow目前支持比较完善的是Linux和Mac(对Windows的支持还不太全面)。而Mac系统主要使用CPU版本(Mac系统很少使用NVIDIA显卡,而目前TensorFlow对CUDA支持得比较好,对AMD的OpenCL支持还属于实验阶段),安装方式和Linux的CPU方式基本一致。

安装Anaconda

Anaconda是Python的一个科学计算发行版,内置了数百个Python经常会使用的库,也包括许多我们做机器学习或数据挖掘的库,包括Scikit-learn、NumPy、SciPy和Pandas等,其中可能有些是TensorFlow的依赖库。

Anaconda的下载地址:

https://www.continuum.io/downloads

Mac下有两种安装方式,一种是窗口式的安装程序(.pkg),一种是命令行安装程序(.sh),一般选择第二种。下载后执行以下命令:

bash Anaconda3-4.4.0-MacOSX-x86_64.sh

TensorFlow CPU版本的安装

TensorFlow的CPU版本相对容易安装,一般分为两种情况,一种是安装编译好的release版本,推荐大部分用户安装这种版本;第二种使用分支源码进行编译安装。

第一种安装release版本,到https://github.com/tensorflow/tensorflow下载最新的release版本(.whl)到本地,然后本地执行:

pip install --gpgrade tensorflow-1.3.0rc0-py3-none-any.whl

第二种使用源码编译安装,先确保系统安装了gcc(版本最好介于4.8~5.4之间),还要确保安装了构建工具bazel。bazel是Google自家的编译工具,以快速、可扩展、灵活、可靠著称,下载安装方式如下地址:

https://github.com/bazelbuild/bazel

安装步骤:

(1) 下载源码包,解压

wget https://github.com/tensorflow/tensorflow/archive/v1.3.0-rc0.tar.gz
tar -zxvf v1.3.0-rc0.tar.gz

(2) 进入源码目录,配置

cd tensorflow-1.3.0-rc0
./configure
  • 选择Python路径,确保使用Anaconda的Python路径
  • 选择CPU编译优化选项,默认-march=native就好
  • 是否使用jemalloc作为默认的malloc实现(仅linux),默认就好
  • 是否开启Google云平台支持,选择否
  • 是否需要支持Hadoop File System,如果需要读取HDFS数据,就选择yes
  • 是否开启XLA JIT编译功能,建议选no
  • 选择Python的Library路径,依然使用Anaconda的路径
  • 不选择使用GPU,包括OpenCL和CUDA

(3) 执行编译

bazel build --copt=-march=native -c opt //tensorflow/tools/pip_package:build_pip_package

(4) 编译结束,生成pip安装包

bazel-bin/tensonflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg

(5) 最后安装

pip install /tmp/tensorflow_pkg/tensorflow-xxx-xxx-xxx-xxx.whl

TensorFlow GPU版本的安装

TensorFlow的GPU版本安装相对复杂。首先需要NVIDIA显卡,然后安装显卡驱动、CUDA和cuDNN。

CUDA的安装

CUDA是NVIDIA推出使用GPU资源进行通用计算(Genral Purpose GPU)的SDK,安装包里一般集成了显卡驱动。

先下载NVIDIA CUDA:

https://developer.nvidia.com/cuda-downloads

(1) 暂停NVIDIA驱动的X server

sudo init 3

(2) 将CUDA的安装包权限设置成可执行,并安装

chmod u+x cuda_8.0.61_375.26_linux.run
sudo ./cuda_8.0.61_375.26_linux.run

(3) 按q键跳过协议说明,并接受协议后选择安装驱动程序

(4) 选择安装路径,一般默认/usr/local/cuda-8.0

(5) 不安装CUDA例子

(6) 安装完毕

cuDNN的安装

cuDNN是NVIDIA推出的深度学习中CNN和RNN的高度优化的实现。

下载cuDNN:

https://developer.nvidia.com/rdp/cudnn-download

进入安装目录并解压包

cd /usr/local
sudo tar -zxvf cudnn-8.0-linux-x64-v5.1.tgz

这样就完成了cuDNN的安装。

CUDA的环境变量设置

vim ~/.bashrc
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:/usr/local/cuda-8.0/extras/CUPTI/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=/usr/local/cuda-8.0
export PATH=/usr/local/cuda-8.0/bin:$PATH
source ~/.bashrc

安装TensorFlow

先到https://github.com/tensorflow/tensorflow下载最新的GPU release版本(.whl)到本地,执行:

pip install --gpgrade tensorflow_gpu-1.3.0rc0-cp35-cp35m-linux_x86_64.whl

然后一步步选择安装完成。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏技术墨客

Windows安装TensorFlow 原

如果在系统中安装使用GPU运行的TensorFlow,需要确保下面介绍的NVIDIA软件已经安装到系统中。

431
来自专栏AI科技评论

开发 | 在 Mac OS X 装不上 TensorFlow?看了这篇就会装

AI科技评论按:本文原作者Enachan。本文原载于作者的GitHub。译者投稿,雷锋网版权所有。 这个文档说明了如何在 Mac OS X 上安装 Tensor...

3587
来自专栏MixLab科技+设计实验室

写给设计师的人工智能指南:Tensorflow快速入门

以下为正文 Tensorflow的环境,我采用的是Docker搭建的。 Docker通常用于如下场景: web应用的自动化打包和发布; 自动化测试和持续集成...

3326
来自专栏AI研习社

在 Mac OS X 装不上 TensorFlow?看了这篇就会装

这个文档说明了如何在 Mac OS X 上安装 TensorFlow。(从 1.2 版本开始,在 Mac OS X 上 TensorFlow 不再支持 GPU。...

5626
来自专栏大数据挖掘DT机器学习

用Python调用百度OCR接口实例

本文主要针对Python开发者,描述百度文字识别接口服务的相关技术内容。OCR接口提供了自然场景下整图文字检测、定位、识别等功能。文字识别的结果可以用于翻译、搜...

8255
来自专栏深度学习那些事儿

深度学习必备:通过VNC连接ubuntu(linux)工作站

此篇讲解如果通过VNC实现win10电脑操控(ubuntu)linux电脑,只需一个键盘一个鼠标就可以操控两个电脑,实现高效率工作。

6035
来自专栏Java3y

操作系统第五篇【死锁】

2904
来自专栏ericzli

Jetson TX1上安装Tensorflow Serving遇到的问题总结

本文的目的是分享在TX1上安装Tensorflow Serving时遇到的主要问题,避免重复踩坑。

3443
来自专栏xingoo, 一个梦想做发明家的程序员

手把手教你cuda5.5与VS2010的编译环境搭建

目前版本的cuda是很方便的,它的一个安装里面包括了Toolkit`SDK`document`Nsight等等,而不用你自己去挨个安装,这样也避免了版本的不同步...

2307
来自专栏Brian

Ubuntu 16.04 Install OpenCV3.4 Pytorch Mxnet Tensorflow

概述 由于需要在Ubuntu 16.04安装多个深度学习框架所以通过博客记录一下安装过程中的坑以及一些关键步骤。这个时候我们需要安装自己需要包装。下面我们通过一...

4825

扫码关注云+社区

领取腾讯云代金券