python数字图像处理(17):边缘与轮廓

在前面的python数字图像处理(10):图像简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测。

本篇我们讲解一些其它方法来检测轮廓。

1、查找轮廓(find_contours)

measure模块中的find_contours()函数,可用来检测二值图像的边缘轮廓。

函数原型为:

skimage.measure.find_contours(array, level)

array: 一个二值数组图像

level: 在图像中查找轮廓的级别值

返回轮廓列表集合,可用for循环取出每一条轮廓。

例1:

import numpy as np
import matplotlib.pyplot as plt
from skimage import measure,draw 

#生成二值测试图像
img=np.zeros([100,100])
img[20:40,60:80]=1  #矩形
rr,cc=draw.circle(60,60,10)  #小圆
rr1,cc1=draw.circle(20,30,15) #大圆
img[rr,cc]=1
img[rr1,cc1]=1

#检测所有图形的轮廓
contours = measure.find_contours(img, 0.5)

#绘制轮廓
fig, (ax0,ax1) = plt.subplots(1,2,figsize=(8,8))
ax0.imshow(img,plt.cm.gray)
ax1.imshow(img,plt.cm.gray)
for n, contour in enumerate(contours):
    ax1.plot(contour[:, 1], contour[:, 0], linewidth=2)
ax1.axis('image')
ax1.set_xticks([])
ax1.set_yticks([])
plt.show()

结果如下:不同的轮廓用不同的颜色显示

例2:

import matplotlib.pyplot as plt
from skimage import measure,data,color

#生成二值测试图像
img=color.rgb2gray(data.horse())

#检测所有图形的轮廓
contours = measure.find_contours(img, 0.5)

#绘制轮廓
fig, axes = plt.subplots(1,2,figsize=(8,8))
ax0, ax1= axes.ravel()
ax0.imshow(img,plt.cm.gray)
ax0.set_title('original image')

rows,cols=img.shape
ax1.axis([0,rows,cols,0])
for n, contour in enumerate(contours):
    ax1.plot(contour[:, 1], contour[:, 0], linewidth=2)
ax1.axis('image')
ax1.set_title('contours')
plt.show()

2、逼近多边形曲线

逼近多边形曲线有两个函数:subdivide_polygon()和 approximate_polygon()

subdivide_polygon()采用B样条(B-Splines)来细分多边形的曲线,该曲线通常在凸包线的内部。

函数格式为:

skimage.measure.subdivide_polygon(coords, degree=2, preserve_ends=False)

coords: 坐标点序列。

degree: B样条的度数,默认为2

preserve_ends: 如果曲线为非闭合曲线,是否保存开始和结束点坐标,默认为false

返回细分为的坐标点序列。

approximate_polygon()是基于Douglas-Peucker算法的一种近似曲线模拟。它根据指定的容忍值来近似一条多边形曲线链,该曲线也在凸包线的内部。

函数格式为:

skimage.measure.approximate_polygon(coords, tolerance)

coords: 坐标点序列

tolerance: 容忍值

返回近似的多边形曲线坐标序列。

例:

import numpy as np
import matplotlib.pyplot as plt
from skimage import measure,data,color

#生成二值测试图像
hand = np.array([[1.64516129, 1.16145833],
                 [1.64516129, 1.59375],
                 [1.35080645, 1.921875],
                 [1.375, 2.18229167],
                 [1.68548387, 1.9375],
                 [1.60887097, 2.55208333],
                 [1.68548387, 2.69791667],
                 [1.76209677, 2.56770833],
                 [1.83064516, 1.97395833],
                 [1.89516129, 2.75],
                 [1.9516129, 2.84895833],
                 [2.01209677, 2.76041667],
                 [1.99193548, 1.99479167],
                 [2.11290323, 2.63020833],
                 [2.2016129, 2.734375],
                 [2.25403226, 2.60416667],
                 [2.14919355, 1.953125],
                 [2.30645161, 2.36979167],
                 [2.39112903, 2.36979167],
                 [2.41532258, 2.1875],
                 [2.1733871, 1.703125],
                 [2.07782258, 1.16666667]])

#检测所有图形的轮廓
new_hand = hand.copy()
for _ in range(5):
    new_hand =measure.subdivide_polygon(new_hand, degree=2)

# approximate subdivided polygon with Douglas-Peucker algorithm
appr_hand =measure.approximate_polygon(new_hand, tolerance=0.02)

print("Number of coordinates:", len(hand), len(new_hand), len(appr_hand))

fig, axes= plt.subplots(2,2, figsize=(9, 8))
ax0,ax1,ax2,ax3=axes.ravel()

ax0.plot(hand[:, 0], hand[:, 1],'r')
ax0.set_title('original hand')
ax1.plot(new_hand[:, 0], new_hand[:, 1],'g')
ax1.set_title('subdivide_polygon')
ax2.plot(appr_hand[:, 0], appr_hand[:, 1],'b')
ax2.set_title('approximate_polygon')

ax3.plot(hand[:, 0], hand[:, 1],'r')
ax3.plot(new_hand[:, 0], new_hand[:, 1],'g')
ax3.plot(appr_hand[:, 0], appr_hand[:, 1],'b')
ax3.set_title('all')

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏懒人开发

(10.3)James Stewart Calculus 5th Edition:Polar Coordinates

这个时候,我们知道半径r = 2 所有的角度都是适合的 我们很容易得到一个圆:

1043
来自专栏机器之心

教程 | 如何利用散点图矩阵进行数据可视化

2218
来自专栏cs

NLP问题之word2vec

其用于有如下的 从「中文分词」、「词云画像」、「词性分析」到「自动摘要」、「关系挖掘」、「情感分析」、「知识图谱」等

2282
来自专栏游戏开发那些事

【Cocos2d-x游戏开发】浅谈游戏中的坐标系

  无论是开发2D还是开发3D游戏,首先必须弄清楚坐标系的概念。在Cocos2d-x中,需要了解的有OpenGL坐标系、世界坐标系和节点坐标系。

1054
来自专栏PPV课数据科学社区

数据挖掘系列(6)决策树分类算法

 从这篇开始,我将介绍分类问题,主要介绍决策树算法、朴素贝叶斯、支持向量机、BP神经网络、懒惰学习算法、随机森林与自适应增强算法、分类模型选择和结果评价。总共7...

4614
来自专栏计算机视觉战队

简单易懂的讲解深度学习(入门系列之五)

我们知道,《三字经》里开篇第一句就是:“人之初,性本善”。那么对于神经网络来说,这句话就要改为:“网之初,感知机”。感知机( Perceptrons ),基本上...

1091
来自专栏算法channel

机器学习|聚类算法之DBSCAN

DBSCAN,全称:Density-Based Spatial Clustering of Applications with Noise,是一个比较有代表性的...

4959
来自专栏CreateAMind

神经网络里的信息存储在哪里?如何更好的存储和提取?

神经元的活性和神经元之间的权重都存储了重要信息,有没有更好的存储方式呢?如何向生物记忆学习呢?

932
来自专栏SeanCheney的专栏

《利用Python进行数据分析·第2版》第13章 Python建模库介绍13.1 pandas与模型代码的接口13.2 用Patsy创建模型描述13.3 statsmodels介绍13.4 sciki

本书中,我已经介绍了Python数据分析的编程基础。因为数据分析师和科学家总是在数据规整和准备上花费大量时间,这本书的重点在于掌握这些功能。 开发模型选用什么库...

1K6
来自专栏专知

【干货】NLP中“词袋”模型和词嵌入模型的比较(附代码)

【导读】词袋模型和词向量表示是自然语言处理中最常用的特征表示方法,但这两种方法各适用于哪些不同的任务,有什么区别,作者Edward Ma详细讲解了这两类使用技巧...

1071

扫码关注云+社区

领取腾讯云代金券