学界 | Github八月深度学习项目热搜Top 10,你Pick哪一个!

大数据文摘出品

编译:CoolBoy

大家好!文摘菌发现了一份过去的一个月机器学习项目的Top 10,特地为大家搬运过来,看看你pick哪一个呢?

这个榜单是从过去一个月的250项开源机器学习项目中挑选出来的。作者比较了这段时间内的新的,重大的成果,并根据一系列的因子来衡量它的专业水准。

开源项目对程序员非常有用,希望你也可以从中找出启发你的那一个!

第十名

GANimation:基于单图的结构性脸部动画(Albert Pumarola等人)[Github中获得344星]

https://github.com/albertpumarola/GANimation?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

这是一个基于动作单元(AU)的新型GAN体系,它展示了一个连续多样的结构性脸部变化,从而定义面部表情。此方法允许调整每个动作单元的度量,并且可以结合其中的几个单元。

第九名

Sg2im:基于场景图的图像生成(谷歌开源) [Github中获得670星]

https://github.com/google/sg2im?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

场景图是一个视觉场景的结构表示图,其中节点表示物体,连线表示物体间的关系。此研究介绍了一个输入场景图,输出图像的端到端神经网络模型。

第八名

Stt-benchmark:语音到文字的基准衡量(Picovoice) [Github中获得294星]

https://github.com/Picovoice/stt-benchmark?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

Cheetah是Picovoice为物联网应用设计的语音识别引擎。与其他模型相比,Cheetah的表现几乎接近于最好的DeepSpeech(0.3 vs 0.32 WER)。但是,它有着快100倍的速度和少398倍的内存。这让Cheetah可以在嵌入小型货品的平台(例如Raspberry Pi)运行,并且便利于大型的,需要更多计算与存储资源的模型。

第七名

Artificial-adversary:生成对抗文本的工具,测试机器学习模型 (Airbnb Engineering)[Github中获得155星]

https://github.com/airbnb/artificial-adversary?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

在区分用户生成的文本时,用户可以有很多方式修改内容,以免被监测。这包括将字符换为类似的长相的字符。例如please wire me 10,000 US DOLLARS to bank of scamland (请给我转10,000美元)可能是一条诈骗信息,但是如果写成pl3@se.wire me 10000 US DoLars to,BANK of ScamIand,很多鉴别器将失灵。

使用这个扩展库,你就可以利用这些方法生成文本,并在你自己的机器学习算法上测试。

第六名

Soccerontable: 在你的桌面上观看足球比赛(Konstantinos Rematas)[Github中获得247星]

https://github.com/krematas/soccerontable?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

请戳文摘之前的报道:在咖啡桌上看世界杯!FB和谷歌刚刚在CVPR联合发布AR看球新方式

第五名

DanceNet:使用Autoencoder,LSTM和混合密度网络的舞蹈生成器 (Keras)[Github中获得282星]

https://github.com/jsn5/dancenet?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

这是一次对舞蹈生成器的尝试☟

视频内容

第四名

UnsupervisedMT:基于短语与神经非监督机器翻译(Facebook Research)[Github中获得490星]

https://github.com/facebookresearch/UnsupervisedMT?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

如今的机器翻译系统虽然接近人类的效率,但这和大量的平行语句有关。这篇文章研究了如何在单一语料库的情形下学习翻译。作者们提出了一种神经模型和一种基于短语的模型。两种模型都在初始化参数、模型降噪、平行数据的迭代生成上斟酌。它们的表现大幅超越之前的模型,并且有着更简单的结构和更少的超参数。

第三名

Vid2vid:视频到视频的合成(NVIDIA AI)[Github中获得1797星]

https://github.com/NVIDIA/vid2vid?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

这篇文章提出一个新型的,利用对抗生成结构的视频到视频合成方法。Github包含了Pytorch的高分辨率实现。这个模型可以将语义标记图转为实际视频,从描边图生成真人讲话动作,或者是由姿势生成人类动作。

第二名

Glow:可逆的1x1卷积生成流(OpenAI)[Github中获得1664星]

https://github.com/openai/glow?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

Glow是一个可逆的生成模型,它被用来做1x1的可逆卷积。它延续了之前的研究(https://arxiv.org/abs/1605.08803),并简化了其结构。此模型可以生成高分辨率的图像,发现可操纵数据的特征。

第一名

Autokeras:自动化机器学习(AutoML)的开源软件库(Haifeng Jin)[Github中获得2637星]

https://github.com/jhfjhfj1/autokeras?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

Auto-Keras是一个AutoML的开源软件库。它由德州农机大学的DATA Lab开发。AutoML的最终目的是将简易的深度学习工具提供给各个领域中不具有数据科学背景的专家。Auto-Keras提供了一些函数,以建立可自动寻找结构和超参数的深度学习模型。

相关报道:

https://medium.mybridge.co/machine-learning-open-source-of-the-month-v-aug-2018-ae85e7302ea5

【今日机器学习概念】

Have a Great Definition

原文发布于微信公众号 - 大数据文摘(BigDataDigest)

原文发表时间:2018-08-28

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏IT派

统计vs机器学习,数据领域的“少林和武当”!

虽然这两个学派的目的都是从数据中挖掘价值,但彼此“互不服气”。注重模型预测效果的人工智能派认为统计学派“固步自封”,研究和使用的模型都只是一些线性模型,太过简单...

10210
来自专栏CSDN技术头条

关于数据科学,书上不曾提及的三点经验

【编者按】本文作者指出了关于数据科学书上很少提及的三点经验:模型评价方法是关键,特征提取是根本,模型选择而非数据集规模最费时间。文章指出,处理上万维的特征和几十...

22170
来自专栏美团技术团队

即时配送的ETA问题之亿级样本特征构造实践

引言 ETA(Estimated time of Arrival,预计送达时间)是外卖配送场景中最重要的变量之一(如图1)。 我们对ETA预估的准确度和合理度会...

36750
来自专栏新智元

【田渊栋年度总结】FAIR强化学习研究进展,理论研究竞争也相当激烈

作者:田渊栋 【新智元导读】FAIR研究科学家田渊栋今天在知乎发表他的2017年工作总结。今年的主要研究方向是两个:一是强化学习及其在游戏上的应用,二是深度学习...

28740
来自专栏量子位

深度神经进化大有可为?Uber详解如何用它优化强化学习 | 5篇论文

作者 Kenneth O. Stanley & Jeff Clune 夏乙 编译自 Uber Engineering Blog 量子位 出品 | 公众号 Qbi...

32040
来自专栏云时之间

新手司机带你看神经网络

什么是神经网络 我们现在所谈论的神经网络不是动物或者人上的神经网络,而是为计算机量身定制的神经系统。 计算机神经网络是一种模仿生物的神经中枢或者动物的神经网络...

30070
来自专栏人工智能头条

何时不应使用深度学习?

9010
来自专栏数据科学与人工智能

【数据科学】数据科学书上很少提及的三点经验

【编者按】本文作者指出了关于数据科学书上很少提及的三点经验:模型评价方法是关键,特征提取是根本,模型选择而非数据集规模最费时间。文章指出,处理上万维的特征和几十...

257100
来自专栏AI科技评论

学界 | FAIR 田渊栋:2017 年的一些研究和探索

今年的主要研究方向是两个:一是强化学习及其在游戏上的应用,二是深度学习理论分析的探索。 今年理论方向我们做了一些文章,主要内容是分析浅层网络梯度下降非凸优化的收...

26040
来自专栏ATYUN订阅号

【算法】“极简主义机器学习”算法可从极小数据中分析图像

美国能源部劳伦斯伯克利国家实验室(伯克利实验室)的数学家们开发了一种新的机器学习方法,旨在实验成像数据。这种新方法不是依靠典型机器学习方法所使用的数十或数十万个...

35770

扫码关注云+社区

领取腾讯云代金券