前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布

回归

作者头像
用户1733462
发布2018-09-20 16:55:51
3710
发布2018-09-20 16:55:51
举报
文章被收录于专栏:数据处理数据处理

岭回归

代码语言:javascript
复制
# Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr>
# License: BSD 3 clause
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model

# X is the 10x10 Hilbert matrix
X = 1. / (np.arange(1, 11) + np.arange(0, 10)[:, np.newaxis])
y = np.ones(10)
y[0:5] = 0
# #############################################################################
# Compute paths

n_alphas = 200
alphas = np.logspace(-10, -2, n_alphas)
#print alphas
coefs = []
scores = []
for a in alphas:
    ridge = linear_model.Ridge(alpha=a, fit_intercept=True)
    ridge.fit(X, y)
    scores.append(ridge.score(X,y))
    coefs.append(ridge.coef_)

# #############################################################################
# Display results
#print scores
fig, axes = plt.subplots(1,2)
ax0, ax1 = axes
ax0.plot(alphas, scores)
ax0.set_xscale('log')
ax0.set_xlabel('alpha')
ax0.set_ylabel('scores')

ax1.plot(alphas, coefs)
ax1.set_xscale('log')
#ax.set_xlim(ax.get_xlim()[::-1])  # reverse axis
fig.set_figwidth = 20
fig.set_figheight = 8

ax1.set_xlabel('alpha')
ax1.set_ylabel('weights')

plt.title('Ridge coefficients as a function of the regularization')
plt.axis('tight')
plt.subplots_adjust(left=-0.1, right= 1.9, bottom=0.1, top=1)

plt.show()

huber回归

代码语言:javascript
复制
import numpy as np
del plt
import matplotlib.pyplot as plt

from sklearn.datasets import make_regression
from sklearn.linear_model import HuberRegressor, Ridge

def huberloss(var, delta):
    if abs(var) > delta:
        return delta*abs(var)-1./2*delta*delta
    else:
        return 1./2*var*var
    
# Generate toy data.
rng = np.random.RandomState(0)
X, y = make_regression(n_samples=20, n_features=1, random_state=0, noise=4.0,
                       bias=100.0)

# Add four strong outliers to the dataset.
X_outliers = rng.normal(0, 0.5, size=(4, 1))
y_outliers = rng.normal(0, 2.0, size=4)
X_outliers[:2, :] += X.max() + X.mean() / 4.
X_outliers[2:, :] += X.min() - X.mean() / 4.
y_outliers[:2] += y.min() - y.mean() / 4.
y_outliers[2:] += y.max() + y.mean() / 4.
X = np.vstack((X, X_outliers))
y = np.concatenate((y, y_outliers))
fig, axes = plt.subplots(1,3)
ax_loss,ax_score, ax1 = axes

ax1.plot(X, y, 'b.')

# Fit the huber regressor over a series of epsilon values.
#colors = ['r-', 'b-', 'y-', 'm-']

x = np.linspace(X.min(), X.max(), 7)
epsilon_values = [1,1.2,1.35, 1.5, 1.75, 1.9]
scores = []
losses =[]

for k, epsilon in enumerate(epsilon_values):
    huber = HuberRegressor(fit_intercept=True, alpha=0.0, max_iter=100,
                           epsilon=epsilon)
    huber.fit(X, y)
    np.sum(huberloss(el, epsilon) for el in (huber.predict(X)-y))
    losses.append(np.sum(huberloss(el, epsilon) for el in (huber.predict(X)-y)))
    scores.append(huber.score(X,y))
    coef_ = huber.coef_ * x + huber.intercept_
    ax1.plot(x, coef_,  label="huber loss, %s" % epsilon)
    #ax1.plot(x, coef_, colors[k], label="huber loss, %s" % epsilon)

ax_loss.plot(epsilon_values, losses)
ax_loss.set_xlabel('delta')
ax_loss.set_ylabel('loss')

ax_score.plot(epsilon_values, scores)
ax_score.set_xlabel('delta')
ax_score.set_ylabel('scores')

# Fit a ridge regressor to compare it to huber regressor.
ridge = Ridge(fit_intercept=True, alpha=0.0, random_state=0, normalize=True)
ridge.fit(X, y)
coef_ridge = ridge.coef_
coef_ = ridge.coef_ * x + ridge.intercept_
ax1.plot(x, coef_, 'g-', label="ridge regression")
ax1.set_title("Comparison of HuberRegressor vs Ridge")
ax1.set_xlabel("X")
ax1.set_ylabel("y")
plt.subplots_adjust(left=-0.1, right= 1.9, bottom=0.1, top=1)
ax1.legend(loc='lower center')
plt.show()
  • 第一幅图使用loss总和来评估回归效果,delta=1,损失最少,从第三幅图来看也是拟合效果最好的
  • 第二幅图使用回归类的R2来评估,对于存在离群点,R2不适用

logcosh回归(使用SGD实现回归算法)

代码语言:javascript
复制
class SDGReggressor():
    def __init__(self, eta, X, Y, N,regular1=0, regular2=0):
        self.eta = eta
        self.X = X
        self.Y = Y
        self.N = N
        self.w = np.array([0]*len(X[0]))
        self.w0 = 0
        self.m = len(X)
        self.n = len(X[0])
        self.regular2 = regular2
        self.regular1 = regular1
    def output_y(self, x):
        return np.dot(x,self.w)+self.w0
    def loss(self, value):
        return np.log(np.cosh(value))
    def derivative(self, value):
        return np.tanh(value)
    def regular_fun(self):
        return self.regular2*np.dot(self.w,self.w)+self.regular1*abs(self.w.sum())
    def training(self):
        self.errors = []
        for times in xrange(self.N):
            delta_y = self.Y-self.output_y(self.X)
            error = (self.loss(delta_y)).sum()+self.regular_fun()
            self.w0 += self.eta*self.derivative(delta_y).sum()
            r1=0
            if abs(self.w.sum()) > 0:
                r1=1
            elif abs(self.w.sum()) == 0:
                r1 = 0
            else:
                r1 = -1
            self.w = self.w + (self.eta*np.dot(self.derivative(delta_y),self.X)+2.0*self.regular2*self.w+r1*self.regular1)
            self.errors.append(error)

per = SDGReggressor(1e-2, X, y, 1000, regular1=0, regular2=0)
per.training()

plt.plot(xrange(per.N), per.errors)
plt.xlabel('loop')
plt.ylabel('errors')
plt.show()

收敛曲线

拟合直线

代码语言:javascript
复制
plt.plot(X, y, 'b.')
plt.plot([-1,3],[-1,3]*per.w+per.w0)
plt.xlabel('X')
plt.ylabel('y')
plt.show()
  • logcosh对于带有离群点数据也能很好的拟合,但是logcosh不需要调参数delta
  • 需要对y数据进行缩小,当y稍微大一点,cosh(y)就趋向于∞

cosh(x)

为什么能减弱离群点的能量

看一下损失函数的导函数tanh(x),当x偏离0时,tanh(x)趋向+1或者-1

tanh(x)

在上面training函数, ΔW, 离群点delta_y是比较大的,导数值都接近+1或者-1,比普通点没有多大的区别,W的变化也变得平滑。

代码语言:javascript
复制
self.w = self.w + (self.eta*np.dot(self.derivative(delta_y),self.X)+2.0*self.regular2*self.w+r1*self.regular1)

对于样本不平衡的回归问题,使用huber、logcosh损失函数,可以提高准确度,减少过拟合。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018.08.20 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 岭回归
  • huber回归
  • logcosh回归(使用SGD实现回归算法)
  • 为什么能减弱离群点的能量
  • 对于样本不平衡的回归问题,使用huber、logcosh损失函数,可以提高准确度,减少过拟合。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档