「大数据系列」:Apache Hive 分布式数据仓库项目介绍

Apache Hive™数据仓库软件有助于读取,编写和管理驻留在分布式存储中的大型数据集并使用SQL语法进行查询

Hive 特性

Hive构建于Apache Hadoop™之上,提供以下功能:

  • 通过SQL轻松访问数据的工具,从而实现数据仓库任务,如提取/转换/加载(ETL),报告和数据分析。
  • 一种在各种数据格式上强加结构的机制
  • 访问直接存储在Apache HDFS™或其他数据存储系统(如Apache HBase™)中的文件
  • 通过Apache Tez™,Apache Spark™或MapReduce执行查询
  • 使用HPL-SQL的过程语言
  • 通过Hive LLAP,Apache YARN和Apache Slider进行亚秒级查询检索。

Hive提供标准的SQL功能,包括许多后来的SQL:2003和SQL:2011分析功能。

Hive的SQL也可以通过用户定义的函数(UDF),用户定义的聚合(UDAF)和用户定义的表来扩展用户代码

函数(UDTF)。

没有唯一的“Hive格式”存储数据。 Hive附带内置连接器,用于逗号和制表符分隔值(CSV/ TSV)文本文件,Apache Parquet™,Apache ORC™和其他格式。

用户可以使用其他格式的连接器扩展Hive。有关详细信息,请参阅开发人员指南中的File Formats和Hive SerDe。

Hive不适用于联机事务处理(OLTP)工作负载。它最适用于传统的数据仓库任务。

Hive旨在最大限度地提高可伸缩性(通过向Hadoop集群动态添加更多计算机来扩展),性能,可扩展性,容错,与输入格式松散耦合。

Hive的组件包括HCatalog和WebHCat。

HCatalog是Hive的一个组件。它是Hadoop的表和存储管理层,使用户可以使用不同的数据

  • 处理工具 - 包括Pig和MapReduce - 可以更轻松地在网格上读写数据。
  • WebHCat提供的服务可用于运行Hadoop MapReduce(或YARN),Pig,Hive作业或执行Hive元数据使用HTTP(REST样式)接口的操作。

Hive 使用

Hive SQL语言手册:命令,CLI,数据类型,

DDL(创建/删除/更改/截断/显示/描述),统计(分析),索引,存档,

DML(加载/插入/更新/删除/合并,导入/导出,解释计划),

查询(选择),运算符和UDF,锁,授权

文件格式和压缩:RCFile,Avro,ORC,Parquet; 压缩,LZO

程序语言:Hive HPL / SQL

Hive配置属性

HIve 客户端

  • Hive客户端(JDBC,ODBC,Thrift)
  • HiveServer2:HiveServer2客户端和直线,Hive指标

Hive Web界面

Hive SerDes:Avro SerDe,Parquet SerDe,CSV SerDe,JSON SerDe

Hive Accumulo集成

Hive HBase集成

Druid整合

Hive Transactions,Streaming Data Ingest和Streaming Mutation API

Hive 计数器

Hive 管理

安装Hive

配置Hive

设置Metastore

Hive Schema Tool

设置Hive Web界面

设置Hive服务器(JDBC,ODBC,Thrift,HiveServer2)

Hive复制

Hive on Amazon Web Services

Amazon Elastic MapReduce上的Hive

Hive on Spark

原文发布于微信公众号 - 智能时刻(intelligentinterconn)

原文发表时间:2018-07-27

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏about云

spark入门基础知识常见问答整理

一. Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpa...

379100
来自专栏Albert陈凯

Hive迁移Saprk SQL的坑和改进办法

Qcon 全球软件开发者大会2016北京站 演讲主题:Spark在360的大规模实践与经验分享 李远策 360-Spark集群概况 ? 360-Spark集...

73170
来自专栏性能与架构

【教程】Apache Storm 快速起步

简介 本教程介绍了 Apache Storm 的基本原理和开发方法,包括一个PDF和2个示例的源码 内容大纲 Storm 是什么 应用场景 Storm与Hado...

33130
来自专栏美图数据技术团队

RDD原理与基本操作 | Spark,从入门到精通

欢迎阅读美图数据技术团队的「Spark,从入门到精通」系列文章,本系列文章将由浅入深为大家介绍 Spark,从框架入门到底层架构的实现,相信总有一种姿势适合你,...

3.2K20
来自专栏Albert陈凯

Spark对比Hadoop MapReduce 的优势

与Hadoop MapReduce相比,Spark的优势如下: ❑ 中间结果:基于MapReduce的计算引擎通常将中间结果输出到磁盘上,以达到存储和容错的目...

31940
来自专栏行者悟空

Spark RDD中的持久化

14230
来自专栏王小雷

Spark学习之基础相关组件(1)

Spark学习之基础相关组件(1) 1. Spark是一个用来实现快速而通用的集群计算的平台。 2. Spark的一个主要特点是能够在内存中进行计算,因而更快。...

21880
来自专栏我是攻城师

Spark 1.3更新概述:176个贡献者,1000+ patches

32440
来自专栏LhWorld哥陪你聊算法

【Spark篇】---Spark初始

Spark是基于内存的计算框架,性能要优于Mapreduce,可以实现hadoop生态圈中的多个组件,是一个非常优秀的大数据框架,是Apache的顶级项目。On...

16530
来自专栏祝威廉

Spark 2.0 Structured Streaming 分析

Spark 2.0 将流式计算也统一到DataFrame里去了,提出了Structured Streaming的概念,将数据源映射为一张无线长度的表,同时将流式...

17230

扫码关注云+社区

领取腾讯云代金券