gpexpand分析

gpexpand分析

一、 gp扩容步骤

1.1 初始化机器

目标:新增加的机器需要初始化和已有机器环境一样。

具体包括不限于以下内容: 创建用户名,设置环境变量,创建数据目录,安装greenplum软件包,解压目录路径。

1.2 修改host

集群所有机器(包括已有机器和新扩容机器)的/etc/hosts文件中,增加新扩容机器的host配置。

1.3 修改GP配置文件

具体修改三个文件。

其中allhostlist,seghostlist文件中添加新增机器的host。

新增文件host_expand,并把新增机器的host写入该文件中。

1.4 打通ssh互信登录

执行命令:

/home/gpadmincloud/install/bin/gpssh-exkeys -f /home/gpadmincloud/deploy/host_expand

备注:host_expand只需是新增加机器的host,而非全部机器HOST。这样也可以实现已有其他机器到新增机器的无密登录。

1.5 生成扩容配置

a) 创建数据库myexpand:执行命令create database myexpand;

作用: 用于存储扩容进度等信息。

b) 执行命令,生成配置。gpexpand -f host_expand -D myexpand。

在命令执行过程中,会交互式的让用户确认相关信息。其中一步是确定扩容节点的分布方式。

提示如下:

What type of mirroring strategy would you like?

spread|grouped (default=grouped):

需要注意的是,这里的分布方式和集群初始化时选择的方式不一定要求一致。也就是说以前机器如果是spread分布,新增加节点既可以是grouped,也可以是spread分布。

对于不同模式,新增机器数量限制如下:

Grouped Mirror: 则新增机器数量必须大于等于2,确保新增加的primary segment节点和mirror segment节点不在同一台机器上。

Spread Mirror: 新增的主机数至少要比每台主机上primary Segment的数量大于1,这样才能确保Mirror可以平均分配在其他的Segment节点上。例如:如果现在单机primary segment数量为3,则新增机器必须大于等于4。

c) 配置文件内容如下:

sdw4-xx-41ma83j3:sdw4-xx-41ma83j3:40000:/data/greenplum/primary/gpseg12:27:12:p:41000

sdw5-xx-41ma83j3:sdw5-xx-41ma83j3:50000:/data/greenplum/mirror/gpseg12:51:12:m:51000

sdw4-xx-41ma83j3:sdw4-xx-41ma83j3:40001:/data/greenplum/primary/gpseg13:28:13:p:41001

sdw6-xx-41ma83j3:sdw6-xx-41ma83j3:50000:/data/greenplum/mirror/gpseg13:55:13:m:51000

sdw4-xx-41ma83j3:sdw4-xx-41ma83j3:40002:/data/greenplum/primary/gpseg14:29:14:p:41002

sdw7-xx-41ma83j3:sdw7-xx-41ma83j3:50000:/data/greenplum/mirror/gpseg14:59:14:m:51000

sdw4-xx-41ma83j3:sdw4-xx-41ma83j3:40003:/data/greenplum/primary/gpseg15:30:15:p:41003

sdw8-xx-41ma83j3:sdw8-xx-41ma83j3:50000:/data/greenplum/mirror/gpseg15:63:15:m:51000

sdw5-xx-41ma83j3:sdw5-xx-41ma83j3:40000:/data/greenplum/primary/gpseg16:31:16:p:41000

sdw6-xx-41ma83j3:sdw6-xx-41ma83j3:50001:/data/greenplum/mirror/gpseg16:56:16:m:51001

sdw5-xx-41ma83j3:sdw5-xx-41ma83j3:40001:/data/greenplum/primary/gpseg17:32:17:p:41001

sdw7-xx-41ma83j3:sdw7-xx-41ma83j3:50001:/data/greenplum/mirror/gpseg17:60:17:m:51001

sdw5-xx-41ma83j3:sdw5-xx-41ma83j3:40002:/data/greenplum/primary/gpseg18:33:18:p:41002

sdw8-xx-41ma83j3:sdw8-xx-41ma83j3:50001:/data/greenplum/mirror/gpseg18:64:18:m:51001

sdw5-xx-41ma83j3:sdw5-xx-41ma83j3:40003:/data/greenplum/primary/gpseg19:34:19:p:41003

sdw4-xx-41ma83j3:sdw4-xx-41ma83j3:50000:/data/greenplum/mirror/gpseg19:47:19:m:51000

sdw6-xx-41ma83j3:sdw6-xx-41ma83j3:40000:/data/greenplum/primary/gpseg20:35:20:p:41000

sdw7-xx-41ma83j3:sdw7-xx-41ma83j3:50002:/data/greenplum/mirror/gpseg20:61:20:m:51002

sdw6-xx-41ma83j3:sdw6-xx-41ma83j3:40001:/data/greenplum/primary/gpseg21:36:21:p:41001

sdw8-xx-41ma83j3:sdw8-xx-41ma83j3:50002:/data/greenplum/mirror/gpseg21:65:21:m:51002

sdw6-xx-41ma83j3:sdw6-xx-41ma83j3:40002:/data/greenplum/primary/gpseg22:37:22:p:41002

sdw4-xx-41ma83j3:sdw4-xx-41ma83j3:50001:/data/greenplum/mirror/gpseg22:48:22:m:51001

sdw6-xx-41ma83j3:sdw6-xx-41ma83j3:40003:/data/greenplum/primary/gpseg23:38:23:p:41003

sdw5-xx-41ma83j3:sdw5-xx-41ma83j3:50001:/data/greenplum/mirror/gpseg23:52:23:m:51001

sdw7-xx-41ma83j3:sdw7-xx-41ma83j3:40000:/data/greenplum/primary/gpseg24:39:24:p:41000

sdw8-xx-41ma83j3:sdw8-xx-41ma83j3:50003:/data/greenplum/mirror/gpseg24:66:24:m:51003

sdw7-xx-41ma83j3:sdw7-xx-41ma83j3:40001:/data/greenplum/primary/gpseg25:40:25:p:41001

sdw4-xx-41ma83j3:sdw4-xx-41ma83j3:50002:/data/greenplum/mirror/gpseg25:49:25:m:51002

sdw7-xx-41ma83j3:sdw7-xx-41ma83j3:40002:/data/greenplum/primary/gpseg26:41:26:p:41002

sdw5-xx-41ma83j3:sdw5-xx-41ma83j3:50002:/data/greenplum/mirror/gpseg26:53:26:m:51002

sdw7-xx-41ma83j3:sdw7-xx-41ma83j3:40003:/data/greenplum/primary/gpseg27:42:27:p:41003

sdw6-xx-41ma83j3:sdw6-xx-41ma83j3:50002:/data/greenplum/mirror/gpseg27:57:27:m:51002

sdw8-xx-41ma83j3:sdw8-xx-41ma83j3:40000:/data/greenplum/primary/gpseg28:43:28:p:41000

sdw4-xx-41ma83j3:sdw4-xx-41ma83j3:50003:/data/greenplum/mirror/gpseg28:50:28:m:51003

sdw8-xx-41ma83j3:sdw8-xx-41ma83j3:40001:/data/greenplum/primary/gpseg29:44:29:p:41001

sdw5-xx-41ma83j3:sdw5-xx-41ma83j3:50003:/data/greenplum/mirror/gpseg29:54:29:m:51003

sdw8-xx-41ma83j3:sdw8-xx-41ma83j3:40002:/data/greenplum/primary/gpseg30:45:30:p:41002

sdw6-xx-41ma83j3:sdw6-xx-41ma83j3:50003:/data/greenplum/mirror/gpseg30:58:30:m:51003

sdw8-xx-41ma83j3:sdw8-xx-41ma83j3:40003:/data/greenplum/primary/gpseg31:46:31:p:41003

sdw7-xx-41ma83j3:sdw7-xx-41ma83j3:50003:/data/greenplum/mirror/gpseg31:62:31:m:51003

1.6 初始化sgment并加入集群

1.6.1 执行命令

gpexpand -i gpexpand_inputfile_20180815_210146 -D myexpand

gpexpand_inputfile_20180815_210146 文件为在步骤1.5中生成的扩容配置文件。

1.6.2 异常处理

这里经常会出现问题,需要输入gpexpand -r -D gpexpand让你回滚扩容操作,但是此时数据库关闭了,并且不能直接用gpstart启动。

因此先执行gpstart –R 启动数据库。再执行gpexpand -r -D myexpand命令进行回滚操作。

回滚成功后,再按照1.6.1步骤,进行segment初始化。

1.7 重分布表

执行命令

gpexpand -D myexpand

该命令会对所有的数据库和表进行重分布。按照对应表的分布键,把数据打散到各个节点,包括新增加的机器。从而实现了扩容操作。

1.8 临时数据清理

执行命令:

gpexpand -c -D myexpand

该命令会对步骤1.6中在myexpand数据库中生成的schema进行清理。

二、 扩容原理分析

gpexpand命令对集群扩容的原理:首先把新增HOST节点添加到master元表。并按照步骤1.5生成的配置对各机器segment初始化和启动操作。

最后执行alter table操作。

ALTER TABLE ONLY xx SET WITH(REORGANIZE=TRUE) DISTRIBUTED by(xx )。

该操作会导致greenplum对表数据进行重分布。从而实现把原集群数据打散分布到新集群中。

2.1 初始化过程分析

在步骤1.6中,执行gpexpand -i gpexpand_inputfile_20180815_210146 -D myexpand对扩容节点初始化。

完成事情有如下三步:

1, 把新增加的节点加入到master元素表中。可以通过select * from gp_segment_configuration order by dbid asc; 查询到新节点已经被加入到集群中,但新增加节点暂时没有数据。

2, 在myexpand数据库中,创建名为gpexpand的schema,这个schema用于保存扩展的所有信息,例如每个表重分布的进度等详细信息。

Status表用于记录扩容进度信息。

myexpand=# select * from gpexpand.status;

status | updated

-------------------+----------------------------

SETUP | 2018-09-18 11:17:29.807489

SETUP DONE | 2018-09-18 11:17:35.294699

EXPANSION STARTED | 2018-09-18 11:18:02.816792

expansion_progress记录数据库表重分布速度等信息。

myexpand=# select * from gpexpand.expansion_progress;

name | value

------------------------------+-----------------------

Bytes Done | 53412116448

Estimated Time to Completion | 00:16:55.504644

Tables In Progress | 1

Bytes Left | 59420929408

Bytes In Progress | 142668912

Tables Left | 229

Tables Expanded | 498

Estimated Expansion Rate | 55.9369898011315 MB/s

status_detail表记录各个表的重分布过程以及进度。

myexpand=# select distinct(status) from gpexpand.status_detail where dbname='gpadmincloud';

status

-------------

COMPLETED

NOT STARTED

IN PROGRESS

3, 将数据库中的所有表全部修改为随机分布(DISTRIBUTED RANDOMLY),这个状态会在步骤1.7中采用alter方式修改回来。同时会把以前的分布键保存在gpexpand.status_detail中,供后面数据重分布恢复分布键。

修改SQL为:UPDATE gp_distribution_policy SET attrnums = NULL ,通过对数据字典表gp_distribution_policy 修改分布键。这种方式避免了数据的重分布。

2.2 数据重分布

在步骤1.7中,命令后gpexpand -D myexpand。会对每一张表执行命令。

ALTER TABLE ONLY t1 SET WITH(REORGANIZE=TRUE) DISTRIBUTED byxxx)。把初始化过程中修改为随机分布的表进行还原。Alter命令会对所有数据重分布。从而实现历史数据分散到所有节点(包括新扩容节点)。

三、 扩容性能分析

3.1 原始数据

3.1.1 100G数据

机器配置:

Segment配置:4 核 16 GB 160GB SSD云盘。

Master规格

扩容目标

耗时(分钟)

2核 8GB

3->6

19

3.1.2 300GB数据

机器配置:

Segment配置:4 核 16 GB 160G SSD云盘。

Master规格

扩容目标

耗时(分钟)

4 核 8 GB

5->8

30

4 核 16 GB

8->12

23

4 核 16 GB

12->16

18.5

3.1.3 600GB数据

机器配置:

Segment配置:8 核 32 GB 320G SSD云盘。

Master规格

扩容目标

耗时(分钟)

4 核 8 GB

10->16

36

4 核 16 GB

16->24

22.5

4 核 16 GB

24->32

17.3

3.1.4 1TB数据

机器配置:

Segment配置:8 核 32 GB 640G SSD云盘。

Master规格

扩容目标

耗时

4 核 8 GB

20->40

31.7

4 核 16 GB

40->60

20.5

3.2 结论

1,同样的数据量,节点越多,扩容速度越快。

2,同样的节点数,扩容速度基本上和数据量成反比。

四、 常见问题小结

1, 执行命令gpexpand,出现Cannot allocate memory 。

原因: master节点内存不足。

解决办法:升级master节点内存数量,或者替换master机器。

最主要是提前规划好master节点规格,包括CPU和内存。

2, 执行扩容过程中,已有链接是否会断开?

答:会。

原因:在步骤1.6过程中,需要重启Greeplum集群。所以已有链接会出现断开情况。

解决办法:业务方重新链接即可。

3,重分布过程,数据库是否可用,只读 or 可读可写?

答:可用,可读可写。

原因:

gpexpand是采用表重分布方式来对集群扩容。对于已经重分布的表,则新写入的数据则根据分布键,按规则放置在不同节点。

如果是对还未重分布的表进行写入数据,则这些新写入的数据,按照随机分布方式,分布到各个节点(也包括新增加的机器节点)。最后在执行alter 操作修改分布键时,数据重分布到所有其他节点。

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏ericzli

Jetson TX1上安装Tensorflow Serving遇到的问题总结

本文的目的是分享在TX1上安装Tensorflow Serving时遇到的主要问题,避免重复踩坑。

3303
来自专栏Greenplum

Greenplum Pgbench命令详解

TPC:Transactionprocessing Performance Council事务处理性能委员会

1271
来自专栏marsggbo

tmux 简单介绍

971
来自专栏小小挖掘机

windows下使用word2vec训练维基百科中文语料全攻略!(一)

训练一个聊天机器人的很重要的一步是词向量训练,无论是生成式聊天机器人还是检索式聊天机器人,都需要将文字转化为词向量,时下最火的词向量训练模型是word2vec,...

2826
来自专栏点滴积累

geotrellis使用(二十三)动态加载时间序列数据

目录 前言 实现方法 总结 一、前言        今天要介绍的绝对是华丽的干货。比如我们从互联网上下载到了一系列(每天或者月平均等)的MODIS数据,我们怎么...

3286
来自专栏Java技术分享

redis集群原理

 redis是单线程,但是一般的作为缓存使用的话,redis足够了,因为它的读写速度太快了。

3419
来自专栏Java3y

操作系统第五篇【死锁】

2794
来自专栏云计算

A Kubernetes Service Mesh(第9部分):使用gRPC的乐趣和收益

原文地址:https://dzone.com/articles/a-service-mesh-for-kubernetes-part-ix-grpc-for-f...

6019
来自专栏FreeBuf

爬虫采集去重优化浅谈

以前在做漏洞Fuzz爬虫时,曾做过URL去重相关的工作,当时是参考了seay法师的文章以及网上零碎的一些资料,感觉做的很简单。近来又遇到相关问题,于是乎有了再次...

3356
来自专栏Golang语言社区

【译】用Go实现一个静态博客生成器

静态站点生成器是一种工具,给一些输入(例如,markdown),使用HTML,CSS和JavaScript生成完全静态的网站。 为什么这很酷?一般来说,搭建一个...

6224

扫码关注云+社区