disentangled-representation-papers

https://github.com/sootlasten/disentangled-representation-papers

This is a curated list of papers on disentangled (and an occasional "conventional") representation learning. Within each year, the papers are ordered from newest to oldest. I've scored the importance/quality of each paper (in my own personal opinion) on a scale of 1 to 3, as indicated by the number of stars in front of each entry in the list. If stars are replaced by a question mark, then it represents a paper I haven't fully read yet, in which case I'm unable to judge its quality.

2018

  • ? Learning Deep Representations by Mutual Information Estimation and Maximization (Aug, Hjelm et. al.) [paper]
  • ? Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies (Aug, Achille et. al.) [paper]
  • ? Insights on Representational Similarity in Neural Networks with Canonical Correlation (Jun, Morcos et. al.) [paper]
  • ** Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects (Jun, Kosiorek et. al.) [paper]
  • *** Neural Scene Representation and Rendering (Jun, Eslami et. al.) [paper]
  • ? Image-to-image translation for cross-domain disentanglement (May, Gonzalez-Garcia et. al.) [paper]
  • * Learning Disentangled Joint Continuous and Discrete Representations (May, Dupont) [paper] [code]
  • ? DGPose: Disentangled Semi-supervised Deep Generative Models for Human Body Analysis (Apr, Bem et. al.) [paper]
  • ? Structured Disentangled Representations (Apr, Esmaeili et. al.) [paper]
  • ** Understanding disentangling in β-VAE (Apr, Burgess et. al.) [paper]
  • ? On the importance of single directions for generalization (Mar, Morcos et. al.) [paper]
  • ** Unsupervised Representation Learning by Predicting Image Rotations (Mar, Gidaris et. al.) [paper]
  • ? Disentangled Sequential Autoencoder (Mar, Li & Mandt) [paper]
  • *** Isolating Sources of Disentanglement in Variational Autoencoders (Mar, Chen et. al.) [paper] [code]
  • ** Disentangling by Factorising (Feb, Kim & Mnih) [paper]
  • ** Disentangling the Independently Controllable Factors of Variation by Interacting with the World (Feb, Bengio's group) [paper]
  • ? On the Latent Space of Wasserstein Auto-Encoders (Feb, Rubenstein et. al.) [paper]
  • ? Auto-Encoding Total Correlation Explanation (Feb, Gao et. al.) [paper]
  • ? Fixing a Broken ELBO (Feb, Alemi et. al.) [paper]
  • * Learning Disentangled Representations with Wasserstein Auto-Encoders (Feb, Rubenstein et. al.) [paper]
  • ? Rethinking Style and Content Disentanglement in Variational Autoencoders (Feb, Shu et. al.) [paper]
  • ? A Framework for the Quantitative Evaluation of Disentangled Representations (Feb, Eastwood & Williams) [paper]

2017

  • ? The β-VAE's Implicit Prior (Dec, Hoffman et. al.) [paper]
  • ** The Multi-Entity Variational Autoencoder (Dec, Nash et. al.) [paper]
  • ? Learning Independent Causal Mechanisms (Dec, Parascandolo et. al.) [paper]
  • ? Variational Inference of Disentangled Latent Concepts from Unlabeled Observations (Nov, Kumar et. al.) [paper]
  • * Neural Discrete Representation Learning (Nov, Oord et. al.) [paper]
  • ? Disentangled Representations via Synergy Minimization (Oct, Steeg et. al.) [paper]
  • ? Unsupervised Learning of Disentangled and Interpretable Representations from Sequential Data (Sep, Hsu et. al.) [paper] [code]
  • * Experiments on the Consciousness Prior (Sep, Bengio & Fedus) [paper]
  • ** The Consciousness Prior (Sep, Bengio) [paper]
  • ? Disentangling Motion, Foreground and Background Features in Videos (Jul, Lin. et. al.) [paper]
  • * SCAN: Learning Hierarchical Compositional Visual Concepts (Jul, Higgins. et. al.) [paper]
  • *** DARLA: Improving Zero-Shot Transfer in Reinforcement Learning (Jul, Higgins et. al.) [paper]
  • ** Unsupervised Learning via Total Correlation Explanation (Jun, Ver Steeg) [paper] [code]
  • ? PixelGAN Autoencoders (Jun, Makhzani & Frey) [paper]
  • ? Emergence of Invariance and Disentanglement in Deep Representations (Jun, Achille & Soatto) [paper]
  • ** A Simple Neural Network Module for Relational Reasoning (Jun, Santoro et. al.) [paper]
  • ? Learning Disentangled Representations with Semi-Supervised Deep Generative Models (Jun, Siddharth, et al.) [paper]
  • ? Unsupervised Learning of Disentangled Representations from Video (May, Denton & Birodkar) [paper]

2016

  • ** Deep Variational Information Bottleneck (Dec, Alemi et. al.) [paper]
  • *** β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework (Nov, Higgins et. al.) [paper] [code]
  • ? Disentangling factors of variation in deep representations using adversarial training (Nov, Mathieu et. al.) [paper]
  • ** Information Dropout: Learning Optimal Representations Through Noisy Computation (Nov, Achille & Soatto) [paper]
  • ** InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets (Jun, Chen et. al.) [paper]
  • *** Attend, Infer, Repeat: Fast Scene Understanding with Generative Models (Mar, Eslami et. al.) [paper]
  • *** Building Machines That Learn and Think Like People (Apr, Lake et. al.) [paper]
  • * Understanding Visual Concepts with Continuation Learning (Feb, Whitney et. al.) [paper]
  • ? Disentangled Representations in Neural Models (Feb, Whitney) [paper]

Older work

  • ** Deep Convolutional Inverse Graphics Network (2015, Kulkarni et. al.) [paper]
  • ? Learning to Disentangle Factors of Variation with Manifold Interaction (2014, Reed et. al.) [paper]
  • *** Representation Learning: A Review and New Perspectives (2013, Bengio et. al.) [paper]
  • ? Disentangling Factors of Variation via Generative Entangling (2012, Desjardinis et. al.) [paper]
  • *** Transforming Auto-encoders (2011, Hinton et. al.) [paper]
  • ** Learning Factorial Codes By Predictability Minimization (1992, Schmidhuber) [paper]
  • *** Self-Organization in a Perceptual Network (1988, Linsker) [paper]

Talks

  • Building Machines that Learn & Think Like People (2018, Tenenbaum) [youtube]
  • From Deep Learning of Disentangled Representations to Higher-level Cognition (2018, Bengio) [youtube]
  • What is wrong with convolutional neural nets? (2017, Hinton) [youtube]

本文分享自微信公众号 - CreateAMind(createamind)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-09-12

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏目标检测和深度学习

全球最全计算机视觉资料(6:问答|边缘检测|姿态估计|图像生成)

17420
来自专栏PPV课数据科学社区

为你分享73篇论文解决深度强化学习的18个关键问题

本文共2434字,建议阅读5分钟。 本文为大家分享了73篇论文,介绍深度学习的方法策略以及关键问题分析。

23820
来自专栏新智元

【最全开工干货】深度学习书单、文献及数据集(共446项)

新年伊始,相信每个人已经制定好了自己2016年的计划。随着无人机和智能机器人在春晚亮相,想必许多人会对“人工智能”、“机器学习”,“深度学习”这些科技热词充满了...

40860
来自专栏目标检测和深度学习

全球最全计算机视觉资料(5:图像和视频标注)

15510
来自专栏Data Analysis & Viz

最全深度学习资源集合(Github:Awesome Deep Learning)Awesome Deep Learning

偶然在github上看到Awesome Deep Learning项目,故分享一下。其中涉及深度学习的免费在线书籍、课程、视频及讲义、论文、教程、网站、数据集、...

26340
来自专栏数据派THU

为你分享73篇论文解决深度强化学习的18个关键问题

来源:PaperWeekly 作者:王凌霄 本文共2434字,建议阅读5分钟。 本文为大家分享了73篇论文,介绍深度学习的方法策略以及关键问题分析。 这两天我阅...

33490
来自专栏专知

【ICCV 2017论文集】计算机视觉顶级会议ICCV2017 Open Access Repository

在这里先整理一些主题系列论文: ICCV 2017- 3D Vision Oral论文如下: Globally-Optimal Inlier Set Maxi...

51280
来自专栏专知

【最新】机器学习顶会 NIPS 2017 Pre-Proceedings 论文列表(附pdf下载链接)

【导读】机器学习领域顶尖学术会议——神经信息处理系统进展大会(Advances in NeuralInformation Processing Systems,...

65590
来自专栏专知

【论文推荐】最新六篇自动问答(QA)相关论文—复杂序列问答、注意力机制、长短时记忆、文本推理、多因素注意力、主动的问答智能体

【导读】专知内容组整理了最近六篇自动问答(Question Answering)相关文章,为大家进行介绍,欢迎查看! 1. Complex Sequential...

63380
来自专栏新智元

ICLR 2017深度学习(提交)论文汇总:NLP、无监督学习、自动编码、RL、RNN(150论文下载)

【新智元导读】ICLR 2017 将于2017年4月24日至26日在法国土伦(toulon)举行,11月4日已经停止接收论文。本文汇总了本年度NLP、无监督学习...

538100

扫码关注云+社区

领取腾讯云代金券