36页最新《深度学习在推荐系统上的应用》综述论文,209篇参考论文

【导读】随着在线信息量的不断增长,推荐系统已成为克服此类信息过载的有效策略。鉴于其在许多网络应用中的广泛采用,以及其改善与过度选择相关的许多问题的潜在影响,推荐系统的实用性不容小觑。近年来,深度学习在计算机视觉和自然语言处理等许多研究领域引起了相当大的兴趣,不仅归功于出色的表现,而且还具有从头开始学习特征表征的吸引人的特性。深度学习的影响也很普遍,最近证明了它在应用于信息检索和推荐系统研究时的有效性。显然,推荐系统中的深度学习领域正在蓬勃发展。本文旨在全面回顾最近基于深度学习的推荐系统的研究工作。更具体地说,我们提供并设计了基于深度学习的推荐模型的分类,并提供了最新技术的综合摘要。最后,我们扩展了当前的趋势,并提供了有关该领域新的令人兴奋的发展的新观点。

论文获取:

https://arxiv.org/pdf/1707.07435.pdf

老版本:

http://www.zhuanzhi.ai/paper/133a9cb36d5d306482e9598d2500a167

或者

请关注专知公众号(扫一扫最下面专知二维码,或者点击上方蓝色专知),

  • 后台回复“DLRS” 就可以获取论文下载链接~

文章简要

推荐系统模型主要分为三个大类:基于协同过滤、基于内容和混合模型。推荐系统要完成的任务也可以分为三类:评分(rarting)、排名(ranking)、分类(classification)。深度学习相关技术用于推荐系统的包括:

多层感知机(MLP)、自动编码器(AE)、CNN(擅长处理格子类型的数据)、RNN(擅长处理序列数据)、深度语义相似度模型(DSSM)、受限波尔茨曼机(RBM)、神经自回归分布预估(NADE)、GAN(生成式对抗网络)、注意力机制、强化学习模型。

  • 多层感知机(MLP):是一个前馈神经网络,在输入和输出层之间有多个隐藏层。这里,感知机可以随意的利用激活函数,不局限与严格表示二分类。
  • Autoencoder(AE):是一个无监督模型,它试图在输出层重构输入数据。通常,bottleneck层(最中间的一层)用于输入数据的突出的特征表达。Autoencoders有很多的变体,例如denoising autoencoder,marginalized denoising autoencoder,sparse autoencoder,contractive autoencoder和variational autoencoder(VAE)。
  • 卷积神经网络(CNN):是一个特别种类的前馈神经网络,有卷积核池化操作,他可以有效的捕捉全局和局部特征,以增强效率和精度。它在处理网格状拓扑结构(grid-like topology)的数据上表现良好。
  • 循环神经网络(RNN):对序列化数据建模比较合适,不像前馈神经网络,RNN有循环和记忆,能够记住前面的计算,其变体经常被用于克服梯度消失问题,如LSTM,GRU。
  • 深度语义相似度模型(Deep Semantic Similarity Model,DSSM):特别是Deep Structured Semantic Model,是一个深度神经网络,用于在连续的语义空间中学习条目的语义表示(semantic representations of entities),衡量他们的语义相似度。
  • 受限的玻尔兹曼机(RBM):是一个两层的神经网络,由一个可见层和一个隐藏层组成。它可以很容易的被堆叠成深度网络,受限这里的意思是隐藏层和可见层的内部是没有交流的。
  • 神经自回归分布(Neural Autoregressive Distribution Estimation, NADE)是一个无监督神经网络,建立在自回归模型和前馈神经网络之上。它是一个易处理的且高效的估计器(tractable and efficient estimator),用来对数据分布和密度进行建模。
  • 生成对抗网络(GAN, Generative Adversarial Network):是一个生成式神经网络,由一个判别器和一个生成器组成。这两个网络可以同时训练,在一个最大最小游戏框架(minimax game framework)下相互竞争进行训练。

-END-

原文发布于微信公众号 - 专知(Quan_Zhuanzhi)

原文发表时间:2018-09-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CVer

YOLOv3:你一定不能错过

原标题: YOLOv3: An Incremental Improvement 原作者: Joseph Redmon Ali Farhadi 翻译者: Am...

2K20
来自专栏算法channel

反向传播( backpropagation ),可以这样直观理解!

本系列是 斯坦福大学自然语言处理-cs224课程的笔记4:神经网络的反向传播的直观解释,前 4 篇笔记如下:深度学习和自然语言处理:介绍;斯坦福大学NLP-cs...

1081
来自专栏数据科学与人工智能

人工神经网络简介

概要:人工神经网络简称神经网络,是基于生物学中神经网络的基本原理。 一、人工神经网络的概念 人工神经网络(Artificial Neural Network,...

4377
来自专栏AI科技大本营的专栏

一文了解迁移学习经典算法

迁移学习(Transfer Learning)目标是将从一个环境中学到的知识用来帮助新环境中的学习任务。

1472
来自专栏应用案例

机器学习中常见4种学习方法、13种算法和27张速查表!

-免费加入AI技术专家社群>> 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家...

1.3K7
来自专栏决胜机器学习

循环神经网络(三) ——词嵌入学习与余弦相似度

循环神经网络(三) ——词嵌入学习与余弦相似度 (原创内容,转载请注明来源,谢谢) 一、词汇表征 1、one-hot表示法 之前的学习中提到过,对于词汇库,可以...

4216
来自专栏专知

【干货】基于属性学习和额外知识库的图像描述生成和视觉问答

【导读】这篇论文提出一种将高层次的概念与CNN-RNN成功结合的方法,并且实验表明这种方法在图像语义生成和视觉问答方面都取得了显着的进步。通过设计一个视觉问答模...

3679
来自专栏PPV课数据科学社区

【干货】机器学习常见算法分类汇总

作者|王萌 转自|IT经理网 (www.ctocio.com) 机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法...

2916
来自专栏机器学习算法工程师

机器学习各种熵:从入门到全面掌握

作者: 黄海安 编辑: 陈人和 概述 信息熵是信息论和机器学习中非常重要的概念,应用及其广泛,各种熵之间都存在某些直接或...

67211
来自专栏AI科技评论

干货 | 张宇伦:基于残差密集网络的图像超分辨率(CVPR 2018 亮点论文)| 分享总结

AI 科技评论按:图像超分辨率技术作为底层计算机视觉任务,有着广泛的应用场景,比如:手机图像增强,视频监控,医疗影像,卫星图像,低分辨率人脸识别。因此,图像超分...

1852

扫码关注云+社区

领取腾讯云代金券