KDD2018 网络表示学习最新教程:DeepWalk作者Perozzi等人带你探索最前沿

【导读】近日,数据挖掘领域最具影响力的学术会议之一的ACM SIGKDD (知识发现与数据挖掘会议)已于 8 月 19 日在英国伦敦召开。在这次会议上,来自伊利诺伊大学芝加哥分校(UIC)的Ivan Brugere老师、Google的Bryan Perozzi老师、清华大学的崔鹏、朱文武老师、西蒙弗雷泽大学的PEI JIAN老师以及伊利诺伊大学芝加哥分校的Tanya Berger-Wolf老师分享了《建模网络中的数据+网络嵌入:问题,方法和前沿》这一Tutorial。

作者:Ivan Brugere、Bryan Perozzi、Peng Cui、Wenwu Zhu、Jian Pei、Tanya Berger-Wolf

编译:专知

这次介绍KDD2018中《Modeling Data With Networks + Network Embedding: Problems, Methodologies and Frontiers 》所配的4部分的PPT,这套PPT由浅入深地介绍了当前比较火热的网络节点表示以及图卷积学习最新相关研究。分别从数据中推断图(graph)、无监督图表示学习,半监督图表示学习和全图表示学习这几个部分详细介绍了图网络的前沿技术。

很多人其实不清楚Graph Embedding 和 Network Embedding的区别和联系,为什么Graph Embedding不能实现Network Embedding的目标,在这个Tutorial中,老师们给出了他们的建议,值得大家仔细学习和收藏!

介绍

来自数据中的网络(Networks From Data)

网络代表了社会,生物或信息系统的进程。研究人员定期收集数据并使用网络表示这些数据。在收集和将这些底层数据转换为网络表示形式时,有许多隐式和显式的选择。

表示的选择会影响下游分析:链接和标签预测,假设检验等。此外,研究人员往往不控制底层数据或其集合,而是想在给定的网络上学习问题的最佳表示本教程探讨了将数据转换为网络表示和从网络中提取潜在表示所面临的挑战。我们比较了直接从数据中直接得到的全局模型,推断的网络模型和推断的潜在空间模型这几个优势。

网络嵌入(网络节点表示,Network Embedding)

如今,越来越大,越来越复杂的网络被用于越来越多的应用中。众所周知,网络数据复杂且具有挑战性。为了有效地处理图形数据,第一个关键挑战是网络数据表示,即如何正确地表示网络,以便在时间和空间上高效地执行模式发现、分析和预测等高级分析任务。

在本教程中,我们将回顾有关网络嵌入的最新方法和成果。更具体地说,将会讨论一系列网络嵌入的基本问题,包括为什么我们需要重新审视网络表示,什么是网络嵌入的基本问题,如何学习网络嵌入,以及网络嵌入的最新进展和趋势。

这是研究网络图表示学习的Motivation.

参考链接:

https://ivanbrugere.github.io/kdd2018/

附部分PPT:

原文发布于微信公众号 - 专知(Quan_Zhuanzhi)

原文发表时间:2018-08-21

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技大本营的专栏

重磅 | 小米首次公开发表论文:基于注意力机制的端对端语音识别(附论文翻译)

文/CSDN周翔 今年 3 月,雷军在两会的媒体沟通会上表示,“去年年初,小米设立了探索实验室,不久将有重磅级的人工智能产品发布。” 昨日(7 月 26 日)下...

4186
来自专栏新智元

【机械蛮力和人类智能】符号主义和联接主义的魔咒

人工智能领域的主要思想流派大致可以分为符号主义和联接主义。两种方法具有完全不同的哲学观点,计算方法和适用范围。两者都有着令人叹为观止的壮丽恢弘,也都有着自身难以...

3916
来自专栏人工智能头条

我在机器学习踩过的坑,现在告诉你怎么跳过去

人工智能(其实本禅师认为目前看来翻译成人造智能可能更直白一点)毫无疑问,已经是科技趋势,却又是门槛相对较高、对学习者要求非常高的一门科学。

1733
来自专栏CDA数据分析师

不可错过的优质深度学习课程

原作者   David Venturi 编译 CDA 编译团队 本文为  CDA 数据分析师原创翻译作品,转载需授权 几乎每天都可以看到深度学习改变日常生活的新...

25610
来自专栏量子位

Google开源新AI模型,语音区分准确率92%创新高 | 论文+GitHub

所谓“千人千面”,此之谓也。小孩说话,它就依照小孩的喜好和模式,老人票友,它的智能推荐也相应变化……

973
来自专栏专知

吴恩达最新深度学习课程: 斯坦福2018—Andrew Ng、Kian Katanforoosh主讲(附PPT)

【导读】近期,斯坦福大学深度学习课程有开课了,主讲老师是人工智能领域知名学者Andrew Ng和Kian Katanforoosh。我们在早些时候也编辑发布了卡...

5456
来自专栏AI科技评论

学界 | 回望2017,基于深度学习的NLP研究大盘点

在过去的几年里,深度学习(DL)架构和算法在诸如图像识别和语音处理等领域取得了世人瞩目的进步。然而在最开始的时候,深度学习在自然语言处理(Natural Lan...

3365
来自专栏AI科技评论

华为诺亚方舟实验室主任李航:自然语言处理的未来趋势

编者按:12月18日,腾讯大数据峰会暨KDD China技术峰会在深圳举行,华为诺亚方舟实验室主任李航博士在会上做了题为《自然语言处理中的深度学习:过去、现在和...

3656
来自专栏人工智能头条

谷歌Gorila强化学习体系解析

1414
来自专栏数据科学与人工智能

【陆勤阅读】数据科学

“用数据来研究科学,科学的研究数据” “数据科学将逐渐达到与其他自然科学分庭抗礼的地位” ——作者 数据科学主要包括两个方面:用数据的方法来研究科学和用科...

22010

扫码关注云+社区

领取腾讯云代金券