实验四 二维几何变换

1. 课程名称:计算机图形学

2. 实验目的和要求:

目的:了解二维变换的变换原理、变换种类、变换方法。

要求:读懂示范代码,掌握变换的简单实现与相关运算。

3. 实验题目:二维几何变换

4. 实验过程:

(1) 了解示范程序的运行过程;

(2) 结合运行过程,读懂示范代码;

(3) 在示范代码的基础上,结合自己的想法尝试修改代码。

5. 实验结果

6. 实验分析

7. 附示范代码

/Files/opengl/4_二维基本几何变换算法.rar

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CVer

用OpenCV实现图像和视频神经风格迁移(含代码)

2015年,Gatsys等人在论文A Neural Algorithm of Artistic Style中提出了最初的神经风格迁移算法。2016年,Johns...

58530
来自专栏大数据挖掘DT机器学习

阿里天池大数据竞赛实战:RF&GBRT 完成过程

一点比赛心得,供不太熟悉Xlab RF和GBRT调用的同学参考,不喜勿喷,大神绕道---------- 6月初的时候LR 做到4.9后一直上不去,...

408110
来自专栏深度学习那些事儿

TensorFlow中滑动平均模型介绍

其中a的取值范围[0,1],具体就是:本次滤波结果=(1-a)*本次采样值+a*上次滤波结果,采用此算法的目的是:

52390
来自专栏机器之心

资源 | 如何通过CRF-RNN模型实现图像语义分割任务

选自GitHub 作者:Shuai Zheng等 机器之心编译 参与:蒋思源 本 Github 项目通过结合 CNN 和 CRF-RNN 模型实现图像的语义分割...

685150
来自专栏ATYUN订阅号

在Keras中展示深度学习模式的训练历史记录

通过观察神经网络和深度学习模型在训练期间的表现,你可以得知很多有用的信息。 Keras是Python中强大的库,为创建深度学习模型提供了一个简单的接口,并包装了...

65390
来自专栏决胜机器学习

机器学习(十) ——使用决策树进行预测(离散特征值)

机器学习(十)——使用决策树进行预测(离散特征值) (原创内容,转载请注明来源,谢谢) 一、绘制决策树 决策树的一大优点是直观,但是前提是其以图像形式展示。如...

40560
来自专栏数据派THU

手把手教你用Keras进行多标签分类(附代码)

本文将通过拆解SmallVGGNet的架构及代码实例来讲解如何运用Keras进行多标签分类。

7.7K110
来自专栏磐创AI技术团队的专栏

ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人

简介 ? 还在开发中,它工作的效果还不好。但是你可以直接训练,并且运行。 包含预处理过的 twitter 英文数据集,训练,运行,工具代码,可以运行但是效果有待...

47380
来自专栏杨熹的专栏

了解 Sklearn 的数据集

学习资料:大家可以去莫烦的学习网站学到更多的知识。 学习资料: 相关代码 更多可用数据 网址 ---- ? 今天来看 Sklearn 中的 data s...

35480
来自专栏ATYUN订阅号

【教程】使用TensorFlow对象检测接口标注数据集

当为机器学习对象检测和识别模型构建数据集时,为数据集中的所有图像生成标注非常耗时。而这些标注是训练和测试模型所必需的,并且标注必须是准确的。因此,数据集中的所有...

52470

扫码关注云+社区

领取腾讯云代金券