首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >基于tensorflow的手写数字分类预测kaggle实战

基于tensorflow的手写数字分类预测kaggle实战

作者头像
潇洒坤
发布2018-10-09 11:44:07
7460
发布2018-10-09 11:44:07
举报
文章被收录于专栏:简书专栏简书专栏

2018年9月19日笔记

kaggle网站手写数字分类的比赛链接:https://www.kaggle.com/c/digit-recognizer

注册账号后才能参加kaggle比赛,本文作者成绩前2%,如下图所示:

image.png

0.尝试提交

本文作者提供一份能够获得较好成绩的文件,读者可以提交该文件熟悉提交流程。

下载链接: https://pan.baidu.com/s/1QKVMmAnW7Ui1104fhfiljg 提取码: mqex

该作答文件的提交成绩有0.99814,如果读者想提高成绩到0.99985,请阅读后面的章节。

1.下载并解压数据集

MNIST数据集下载链接: https://pan.baidu.com/s/1fPbgMqsEvk2WyM9hy5Em6w 密码: wa9p

下载压缩文件MNIST_data.rar完成后,选择解压到当前文件夹不要选择解压到MNIST_data。

文件夹结构如下图所示:

image.png

2.配置环境

使用卷积神经网络模型要求有较高的机器配置,如果使用CPU版tensorflow会花费大量时间。

读者在有nvidia显卡的情况下,安装GPU版tensorflow会提高计算速度50倍。

安装教程链接:https://mp.weixin.qq.com/s/MTugq-5AdPGik3yJb9yDJQ

如果没有nvidia显卡,但有visa信用卡,请阅读我的另一篇文章《在谷歌云服务器上搭建深度学习平台》,链接:https://www.jianshu.com/p/893d622d1b5a

3.模型训练并保存

本文作者此段代码是在谷歌云服务器上运行,谷歌云服务器的GPU显存有16G。

因为个人电脑GPU的显存不足,读者可能无法运行,解决办法是减少feed_dict中的样本数量。

理解下面一段代码,请阅读本文作者的另外一篇文章《基于tensorflow+CNN的MNIST数据集手写数字分类》,链接:https://cloud.tencent.com/developer/article/1351820

import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import random
import numpy as np

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch_size = 300
X_holder = tf.placeholder(tf.float32)
y_holder = tf.placeholder(tf.float32)
X = np.vstack([mnist.train.images, mnist.test.images, mnist.validation.images])
y = np.vstack([mnist.train.labels, mnist.test.labels, mnist.validation.labels])
print(X.shape, y.shape)

X_images = tf.reshape(X_holder, [-1, 28, 28, 1])
#convolutional layer 1
conv1_Weights = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1), name='conv1_Weights')
conv1_biases = tf.Variable(tf.constant(0.1, shape=[32]), name='conv1_biases')
conv1_conv2d = tf.nn.conv2d(X_images, conv1_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv1_biases
conv1_activated = tf.nn.relu(conv1_conv2d)
conv1_pooled = tf.nn.max_pool(conv1_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#convolutional layer 2
conv2_Weights = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1), name='conv2_Weights')
conv2_biases = tf.Variable(tf.constant(0.1, shape=[64]), name='conv2_biases')
conv2_conv2d = tf.nn.conv2d(conv1_pooled, conv2_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv2_biases
conv2_activated = tf.nn.relu(conv2_conv2d)
conv2_pooled = tf.nn.max_pool(conv2_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#full connected layer 1
connect1_flat = tf.reshape(conv2_pooled, [-1, 7 * 7 * 64])
connect1_Weights = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1), name='connect1_Weights')
connect1_biases = tf.Variable(tf.constant(0.1, shape=[1024]), name='connect1_biases')
connect1_Wx_plus_b = tf.add(tf.matmul(connect1_flat, connect1_Weights), connect1_biases)
connect1_activated = tf.nn.relu(connect1_Wx_plus_b)
#full connected layer 2
connect2_Weights = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1), name='connect2_Weights')
connect2_biases = tf.Variable(tf.constant(0.1, shape=[10]), name='connect2_biases')
connect2_Wx_plus_b = tf.add(tf.matmul(connect1_activated, connect2_Weights), connect2_biases)
predict_y = tf.nn.softmax(connect2_Wx_plus_b)
#loss and train
loss = tf.reduce_mean(-tf.reduce_sum(y_holder * tf.log(predict_y), 1))
optimizer = tf.train.AdamOptimizer(0.0001)
train = optimizer.minimize(loss)

init = tf.global_variables_initializer()
session = tf.Session()
session.run(init)
saver = tf.train.Saver()

for i in range(20000):
    selected_index = random.sample(range(len(y)), k=batch_size)
    selected_X = X[selected_index]
    selected_y = y[selected_index]
    session.run(train, feed_dict={X_holder:selected_X, y_holder:selected_y})
    if i % 100 == 0:
        correct_prediction = tf.equal(tf.argmax(predict_y, 1), tf.argmax(y_holder, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        train_accuracy = session.run(accuracy, feed_dict={X_holder:mnist.train.images, y_holder:mnist.train.labels})
        test_accuracy = session.run(accuracy, feed_dict={X_holder:mnist.test.images, y_holder:mnist.test.labels})
        validation_accuracy = session.run(accuracy, feed_dict={X_holder:mnist.validation.images, y_holder:mnist.validation.labels})
        print('step:%d train accuracy:%.4f test accuracy:%.4f validation accuracy:%.4f' %(i, train_accuracy, test_accuracy, validation_accuracy))
        if train_accuracy == 1 and test_accuracy == 1 and validation_accuracy == 1:
            save_path = saver.save(session, 'mnist_cnn_model/mnist_cnn.ckpt')
            print('Save to path:', save_path)

4.加载模型

本文作者提供获得最佳成绩0.99985的模型,读者可以加载该模型,并用此模型预测并提交成绩。

模型下载链接: https://pan.baidu.com/s/1zVLHdGiZflspV9jPWn_ECA 提取码: nktv

如果读者有服务器,可以尝试获取保存的模型,下载按钮如下图所示:

image.png

import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch_size = 100
X_holder = tf.placeholder(tf.float32)
y_holder = tf.placeholder(tf.float32)

X_images = tf.reshape(X_holder, [-1, 28, 28, 1])
#convolutional layer 1
conv1_Weights = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1), name='conv1_Weights')
conv1_biases = tf.Variable(tf.constant(0.1, shape=[32]), name='conv1_biases')
conv1_conv2d = tf.nn.conv2d(X_images, conv1_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv1_biases
conv1_activated = tf.nn.relu(conv1_conv2d)
conv1_pooled = tf.nn.max_pool(conv1_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#convolutional layer 2
conv2_Weights = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1), name='conv2_Weights')
conv2_biases = tf.Variable(tf.constant(0.1, shape=[64]), name='conv2_biases')
conv2_conv2d = tf.nn.conv2d(conv1_pooled, conv2_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv2_biases
conv2_activated = tf.nn.relu(conv2_conv2d)
conv2_pooled = tf.nn.max_pool(conv2_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#full connected layer 1
connect1_flat = tf.reshape(conv2_pooled, [-1, 7 * 7 * 64])
connect1_Weights = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1), name='connect1_Weights')
connect1_biases = tf.Variable(tf.constant(0.1, shape=[1024]), name='connect1_biases')
connect1_Wx_plus_b = tf.add(tf.matmul(connect1_flat, connect1_Weights), connect1_biases)
connect1_activated = tf.nn.relu(connect1_Wx_plus_b)
#full connected layer 2
connect2_Weights = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1), name='connect2_Weights')
connect2_biases = tf.Variable(tf.constant(0.1, shape=[10]), name='connect2_biases')
connect2_Wx_plus_b = tf.add(tf.matmul(connect1_activated, connect2_Weights), connect2_biases)
predict_y = tf.nn.softmax(connect2_Wx_plus_b)
#loss and train
loss = tf.reduce_mean(-tf.reduce_sum(y_holder * tf.log(predict_y), 1))
optimizer = tf.train.AdamOptimizer(0.0001)
train = optimizer.minimize(loss)

session = tf.Session()
saver = tf.train.Saver()
saver.restore(session, 'mnist_cnn_model/mnist_cnn.ckpt')
correct_prediction = tf.equal(tf.argmax(predict_y, 1), tf.argmax(y_holder, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('load model successful')
train_images, train_labels = mnist.train.next_batch(5000)
test_images, test_labels = mnist.test.next_batch(5000)
train_accuracy = session.run(accuracy, feed_dict={X_holder:train_images, y_holder:train_labels})
test_accuracy = session.run(accuracy, feed_dict={X_holder:test_images, y_holder:test_labels})
print('train accuracy:%.4f test accuracy:%.4f' %(train_accuracy, test_accuracy))

上面一段代码的运行结果如下:

Extracting MNIST_data/train-images-idx3-ubyte.gz Extracting MNIST_data/train-labels-idx1-ubyte.gz Extracting MNIST_data/t10k-images-idx3-ubyte.gz Extracting MNIST_data/t10k-labels-idx1-ubyte.gz INFO:tensorflow:Restoring parameters from mnist_cnn_model/mnist_cnn.ckpt load model successful train accuracy:1.0000 test accuracy:1.0000

5.模型预测

此第5张能够成功运行的前提是已经成功运行第4章的代码,即加载模型成功。

将测试样本分成6份,可以解决因为显存不足无法运行的问题。

import pandas as pd

test_df = pd.read_csv('test.csv')
X = test_df.values
print('特征矩阵的形状:', X.shape)
X1 = X[:5000]
X2 = X[5000:10000]
X3 = X[10000:15000]
X4 = X[15000:20000]
X5 = X[20000:25000]
X6 = X[25000:]
y1 = session.run(predict_y, feed_dict={X_holder:X1})
y2 = session.run(predict_y, feed_dict={X_holder:X2})
y3 = session.run(predict_y, feed_dict={X_holder:X3})
y4 = session.run(predict_y, feed_dict={X_holder:X4})
y5 = session.run(predict_y, feed_dict={X_holder:X5})
y6 = session.run(predict_y, feed_dict={X_holder:X6})

import numpy as np
y = np.vstack([y1, y2, y3, y4, y5, y6])
y_argmax = np.argmax(y, 1)
y_argmax.shape
print('预测值的形状:', y_argmax.shape)
commit_df = pd.DataFrame({'ImageId': range(1, 1+len(y_argmax)),
                         'Label': y_argmax})
fileName = 'kaggle_commit3.csv'
commit_df.to_csv(fileName, index=False)
print('预测结果已经保存到文件', fileName)

上面一段代码的运行结果如下:

特征矩阵的形状: (28000, 784) 预测值的形状: (28000,) 预测结果已经保存到文件 kaggle_commit3.csv

6.提交作答文件

比赛链接:https://www.kaggle.com/c/digit-recognizer

点击下面的按钮提交作答文件。

image.png

如下图所示,点击上方红色方框标注处可以选择作答文件提交上传。

上传成功后还需要点击下方红色方框提交。

image.png

提交成功后,可以实时查看作答成绩。

7.总结

1.自己电脑配置不足,使用云服务器极大的加快了工程部署和模型训练速度;

2.在kaggle经典入门赛取得前2%的成绩,把简单的事做到极致;

3.本文作者提供可以加载的模型只能取得0.99571的成绩。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018.09.20 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 0.尝试提交
  • 1.下载并解压数据集
  • 2.配置环境
  • 3.模型训练并保存
  • 4.加载模型
  • 5.模型预测
  • 6.提交作答文件
  • 7.总结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档