首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >神经网络压缩实验-Deep-compression实验准备剪枝实验量化实验

神经网络压缩实验-Deep-compression实验准备剪枝实验量化实验

作者头像
月见樽
发布2018-10-09 14:29:59
2.5K0
发布2018-10-09 14:29:59
举报

首发于个人博客,结合论文阅读笔记更佳

实验准备

基础网络搭建

为了实现神经网络的deep compression,首先要训练一个深度神经网络,为了方便实现,这里实现一个两层卷积+两层MLP的神经网络

class net(pt.nn.Module):
    
    def __init__(self):
        super(net,self).__init__()
        self.conv1 = pt.nn.Conv2d(in_channels=1,out_channels=64,kernel_size=3,padding=1)
        self.conv2 = pt.nn.Conv2d(in_channels=64,out_channels=256,kernel_size=3,padding=1)
        self.fc1 = pt.nn.Linear(in_features=7*7*256,out_features=512)
        self.fc2 = pt.nn.Linear(in_features=512,out_features=10)
        self.pool = pt.nn.MaxPool2d(2)
        
    def forward(self,x):
        x = self.pool(pt.nn.functional.relu(self.conv1(x)))
        x = self.pool(pt.nn.functional.relu(self.conv2(x)))
        x = pt.nn.functional.relu(self.fc1(x.view((-1,7*7*256))))
        return self.fc2(x)
model = net().cuda()
print(model)
print(model(pt.rand(1,1,28,28).cuda()))
net(
  (conv1): Conv2d(1, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (conv2): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (fc1): Linear(in_features=12544, out_features=512, bias=True)
  (fc2): Linear(in_features=512, out_features=10, bias=True)
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
tensor(1.00000e-02 *
       [[-7.7157,  3.0435, -6.5732,  6.5343, -4.2159, -2.8651, -0.6792,
          3.9223, -3.7523,  2.4532]], device='cuda:0')

基础网络训练

准备数据集

train_dataset = ptv.datasets.MNIST("./",download=True,transform=ptv.transforms.ToTensor())
test_dataset = ptv.datasets.MNIST("./",train=False,transform=ptv.transforms.ToTensor())
trainloader = pt.utils.data.DataLoader(train_dataset,shuffle=True,batch_size=128)
testloader = pt.utils.data.DataLoader(test_dataset,shuffle=True,batch_size=128)

代价函数与优化器

lossfunc = pt.nn.CrossEntropyLoss().cuda()
optimizer = pt.optim.Adam(model.parameters(),1e-4)
def acc(outputs,label):
    _,data = pt.max(outputs,dim=1)
    return pt.mean((data.float()==label.float()).float()).item()

网络训练

for _ in range(1):
    for i,(data,label) in enumerate(trainloader):
        data,label = data.cuda(),label.cuda()
        model.zero_grad()
        outputs = model(data)
        loss = lossfunc(outputs,label)
        loss.backward()
        optimizer.step()
        if i % 100 == 0:
            print(i,acc(outputs,label))
0 0.1171875
100 0.8984375
200 0.953125
300 0.984375
400 0.96875

测试网络

def test_model(model,testloader):
    result = []
    for data,label in testloader:
        data,label = data.cuda(),label.cuda()
        outputs = model(data)
        result.append(acc(outputs,label))
    result = sum(result) / len(result)
    print(result)
    return result
test_model(model,testloader)
0.96875

保存网络

pt.save(model.state_dict(),"./base.ptb")

剪枝实验

剪枝是deep compression的第一步,含义是将部分较小(小于某个阈值)的权值置位为0,表示这个连接被剪掉,且在之后的微调过程中,这个连接的梯度也将被置位为0,即不参加训练

准备相关工具

剪枝实验需要准备一些函数:剪枝函数,梯度剪枝函数和稀疏度评估函数

剪枝函数

剪枝函数输入模型和阈值,将所有绝对值小于阈值的权值置位为0

def puring(model,threshold):
    for i in model.parameters():
        i.data[pt.abs(i) < threshold] = 0
    return model

梯度剪枝函数

def grad_puring(model):
    for i in model.parameters():
        mask = i.clone()
        mask[mask != 0] = 1
        i.grad.data.mul_(mask)

稀疏度评估函数

def print_sparse(model):
    result = []
    total_num = 0
    total_sparse = 0
    print("-----------------------------------")
    print("Layer sparse")
    for name,f in model.named_parameters():
        num = f.view(-1).shape[0]
        total_num += num
        sparse = pt.nonzero(f).shape[0]
        total_sparse+= sparse
        print("\t",name,(sparse)/num)
        result.append((sparse)/num)
    total = total_sparse/total_num
    print("Total:",total)
    return total

剪枝

首先,查看原有网络的稀疏度情况

model = net().cuda()
model.load_state_dict(pt.load("./base.ptb"))
_ = test_model(model,testloader)
0.96875
print_sparse(model)
-----------------------------------
Layer sparse
     conv1.weight 1.0
     conv1.bias 1.0
     conv2.weight 1.0
     conv2.bias 1.0
     fc1.weight 1.0
     fc1.bias 1.0
     fc2.weight 1.0
     fc2.bias 1.0
Total: 1.0

可以发现,原有网络完全没有稀疏性,现在进行剪枝,使用阈值为0.01进行剪枝,小于0.01的连接将被剪掉。根据结果可以发现,在阈值0.01下,剪枝后仅剩8.3%参数,且准确率不受影响

model1 = puring(model,0.01)
test_model(model1,testloader)
print_sparse(model1)
0.9706289556962026
-----------------------------------
Layer sparse
     conv1.weight 0.9739583333333334
     conv1.bias 0.90625
     conv2.weight 0.7641262478298612
     conv2.bias 0.71875
     fc1.weight 0.06729390669842156
     fc1.bias 0.025390625
     fc2.weight 0.7837890625
     fc2.bias 0.9
Total: 0.08358673475128647

0.08358673475128647

现在调整阈值为0.1,准确率大幅度下降,现在仅剩很少的参数

model.load_state_dict(pt.load("./base.ptb"))
model2 = puring(model,0.1)
test_model(model2,testloader)
print_sparse(model2)
0.09760680379746836
-----------------------------------
Layer sparse
     conv1.weight 0.671875
     conv1.bias 0.6875
     conv2.weight 0.0
     conv2.bias 0.0
     fc1.weight 0.0
     fc1.bias 0.0
     fc2.weight 0.0
     fc2.bias 0.0
Total: 6.553616029871108e-05

6.553616029871108e-05

现在进行阈值的格点扫描,扫描的范围从0.1到0.01,步长为0.01

sparse_list = []
threshold_list = [x*0.01+0.01 for x in range(10)]
acc_list = []
for i in threshold_list:
    model.load_state_dict(pt.load("./base.ptb"))
    model3 = puring(model,i)
    acc_list.append(test_model(model3,testloader))
    sparse_list.append(print_sparse(model3))
    threshold_list.append
0.9706289556962026
-----------------------------------
Layer sparse
     conv1.weight 0.9739583333333334
     conv1.bias 0.90625
     conv2.weight 0.7641262478298612
     conv2.bias 0.71875
     fc1.weight 0.06729390669842156
     fc1.bias 0.025390625
     fc2.weight 0.7837890625
     fc2.bias 0.9
Total: 0.08358673475128647
0.47735363924050633
-----------------------------------
Layer sparse
     conv1.weight 0.9375
     conv1.bias 0.890625
     conv2.weight 0.5333726671006944
     conv2.bias 0.4765625
     fc1.weight 0.0015011222995057398
     fc1.bias 0.0
     fc2.weight 0.5765625
     fc2.bias 0.7
Total: 0.01398429139292775
0.09513449367088607
-----------------------------------
Layer sparse
     conv1.weight 0.9045138888888888
     conv1.bias 0.890625
     conv2.weight 0.3156263563368056
     conv2.bias 0.2578125
     fc1.weight 1.5414490991709182e-05
     fc1.bias 0.0
     fc2.weight 0.371875
     fc2.bias 0.4
Total: 0.007479941525322959
0.09612341772151899
-----------------------------------
Layer sparse
     conv1.weight 0.8732638888888888
     conv1.bias 0.875
     conv2.weight 0.13545735677083334
     conv2.bias 0.0546875
     fc1.weight 0.0
     fc1.bias 0.0
     fc2.weight 0.1615234375
     fc2.bias 0.1
Total: 0.003250198205069488
0.09691455696202532
-----------------------------------
Layer sparse
     conv1.weight 0.8402777777777778
     conv1.bias 0.84375
     conv2.weight 0.03839111328125
     conv2.bias 0.00390625
     fc1.weight 0.0
     fc1.bias 0.0
     fc2.weight 0.016796875
     fc2.bias 0.0
Total: 0.0009558243703890901
0.1003757911392405
-----------------------------------
Layer sparse
     conv1.weight 0.8142361111111112
     conv1.bias 0.796875
     conv2.weight 0.0084228515625
     conv2.bias 0.0
     fc1.weight 0.0
     fc1.bias 0.0
     fc2.weight 0.0
     fc2.bias 0.0
Total: 0.00026792277133719006
0.09760680379746836
-----------------------------------
Layer sparse
     conv1.weight 0.7760416666666666
     conv1.bias 0.765625
     conv2.weight 0.0014580620659722222
     conv2.bias 0.0
     fc1.weight 0.0
     fc1.bias 0.0
     fc2.weight 0.0
     fc2.bias 0.0
Total: 0.00010811185608441666
0.09760680379746836
-----------------------------------
Layer sparse
     conv1.weight 0.7447916666666666
     conv1.bias 0.734375
     conv2.weight 0.00014241536458333334
     conv2.bias 0.0
     fc1.weight 0.0
     fc1.bias 0.0
     fc2.weight 0.0
     fc2.bias 0.0
Total: 7.55718600196274e-05
0.09968354430379747
-----------------------------------
Layer sparse
     conv1.weight 0.7065972222222222
     conv1.bias 0.71875
     conv2.weight 0.0
     conv2.bias 0.0
     fc1.weight 0.0
     fc1.bias 0.0
     fc2.weight 0.0
     fc2.bias 0.0
Total: 6.888139353901653e-05
0.09760680379746836
-----------------------------------
Layer sparse
     conv1.weight 0.671875
     conv1.bias 0.6875
     conv2.weight 0.0
     conv2.bias 0.0
     fc1.weight 0.0
     fc1.bias 0.0
     fc2.weight 0.0
     fc2.bias 0.0
Total: 6.553616029871108e-05
import matplotlib.pyplot as plt
plt.figure(figsize=(10,3))
plt.subplot(131)
plt.plot(threshold_list,acc_list)
plt.subplot(132)
plt.plot(threshold_list,acc_list)
plt.subplot(133)
plt.plot(sparse_list,acc_list)
plt.show()

output_30_0.png

上图自左向右分别是阈值-准确率,阈值-稀疏度和稀疏度-准确率关系

剪枝后微调

我们发现,阈值为大约0.02时,准确率仅为47%左右,考虑使用微调阈值的方式进行调整

model = net().cuda()
model.load_state_dict(pt.load("./base.ptb"))
model1 = puring(model,0.02)
test_model(model1,testloader)
print_sparse(model1)
0.4759691455696203
-----------------------------------
Layer sparse
     conv1.weight 0.9375
     conv1.bias 0.890625
     conv2.weight 0.5333726671006944
     conv2.bias 0.4765625
     fc1.weight 0.0015011222995057398
     fc1.bias 0.0
     fc2.weight 0.5765625
     fc2.bias 0.7
Total: 0.01398429139292775
optimizer = pt.optim.Adam(model1.parameters(),1e-5)
lossfunc = pt.nn.CrossEntropyLoss().cuda()
for _ in range(4):
    for i,(data,label) in enumerate(trainloader):
        data,label = data.cuda(),label.cuda()
        outputs = model1(data)
        loss = lossfunc(outputs,label)
        loss.backward()
        grad_puring(model1)
        optimizer.step()
        if i % 100 == 0:
            print(i,acc(outputs,label))
0 0.4375
100 0.4375
200 0.5625
300 0.6015625
400 0.6875
0 0.7265625
100 0.6953125
200 0.7890625
300 0.8046875
400 0.7734375
0 0.8125
100 0.8046875
200 0.890625
300 0.8515625
400 0.875
0 0.859375
100 0.8515625
200 0.9140625
300 0.890625
400 0.9296875
test_model(model1,testloader)
print_sparse(model1)
pt.save(model1.state_dict(),'./puring.pt')
0.9367088607594937
-----------------------------------
Layer sparse
     conv1.weight 0.9375
     conv1.bias 0.890625
     conv2.weight 0.5333726671006944
     conv2.bias 0.4765625
     fc1.weight 0.0015011222995057398
     fc1.bias 0.0
     fc2.weight 0.5765625
     fc2.bias 0.7
Total: 0.01398429139292775

由上发现,经过权值微调后,在保持原有的稀疏度的情况下将准确率提高到了90%以上

量化实验

量化过程比较复杂,分为量化和微调两个步骤,量化步骤使用sklearn的k-mean实现,微调使用pytorch本身实现

量化

model = net().cuda()
model.load_state_dict(pt.load("./puring.pt"))
test_model(model,testloader)
0.9367088607594937
from sklearn.cluster import KMeans
import numpy as np
kmean_list = []
bit = 2
for name,i in model.named_parameters():
    data = i.data.clone().view(-1).cpu().detach().numpy().reshape(-1)
    data = data[data != 0]
    if data.size < 2 ** bit:
        kmean_list.append(None)
        continue
    init = [x*(np.max(data)+np.min(data))/(2 ** bit) + np.min(data) for x in range(2 ** bit)]
    kmn = KMeans(2 ** bit,init=np.array(init).reshape(2 ** bit,1))
    kmn.fit(data.reshape((-1,1)))
    kmean_list.append(kmn)
    print(name,i.shape)
conv1.weight torch.Size([64, 1, 3, 3])
conv1.bias torch.Size([64])
conv2.weight torch.Size([256, 64, 3, 3])
conv2.bias torch.Size([256])
fc1.weight torch.Size([512, 12544])
fc2.weight torch.Size([10, 512])
fc2.bias torch.Size([10])


c:\program files\python35\lib\site-packages\sklearn\cluster\k_means_.py:896: RuntimeWarning: Explicit initial center position passed: performing only one init in k-means instead of n_init=10
  return_n_iter=True)

训练完量化器后,将每一层数据使用对应的量化器进行量化

for i,(name,f) in enumerate(model.named_parameters()):
    data = f.data.clone().view(-1).cpu().detach().numpy().reshape(-1)
    data_nozero = data[data != 0].reshape((-1,1))
    if data_nozero.size == 0 or data.size < 2 ** bit or kmean_list[i] is None:
        f.kmeans_result = None
        f.kmeans_label = None
        continue
#     print(name)
#     print(data.size)

    result = data.copy()
    result[result == 0] = -1
    
#     print(data_nozero)
#     print(kmean_list[i])
    label = kmean_list[i].predict(data_nozero).reshape(-1)
#     print(data_nozero)
#     print(label)
    new_data = np.array([kmean_list[i].cluster_centers_[x] for x in label])
    data[data != 0] = new_data.reshape(-1)
#     print(data,new_data)
    f.data = pt.from_numpy(data).view(f.data.shape).cuda()
    result[result != -1] = label
    f.kmeans_result = pt.from_numpy(result).view(f.data.shape).cuda()
    f.kmeans_label = pt.from_numpy(kmean_list[i].cluster_centers_).cuda()
test_model(model,testloader)
print_sparse(model)
0.8919106012658228
-----------------------------------
Layer sparse
     conv1.weight 0.9375
     conv1.bias 0.890625
     conv2.weight 0.5333726671006944
     conv2.bias 0.4765625
     fc1.weight 0.0015011222995057398
     fc1.bias 0.0
     fc2.weight 0.5765625
     fc2.bias 0.7
Total: 0.01398429139292775

0.01398429139292775

由上可以发现,对于这种玩具级的网络来说,2bit量化已经完全足够了,精度损失3个百分点

微调

lossfunc = pt.nn.CrossEntropyLoss().cuda()
lr = 0.001
for _ in range(1):
    for a,(data,label) in enumerate(trainloader):
        data,label = data.cuda(),label.cuda()
        model.zero_grad()
        outputs = model(data)
        loss = lossfunc(outputs,label)
        loss.backward()

        for name,i in model.named_parameters():
#             print(i.data)
#             break
            if i.kmeans_result is None:
                continue
            for x in range(2 ** bit):
                grad = pt.sum(i.grad.detach()[i.kmeans_result == x])
#                 print(grad.item())
                i.kmeans_label[x] += -lr * grad.item()
                i.data[i.kmeans_result == x] = i.kmeans_label[x].item()
#                 print(i.data)
#                 break
#             print(name)
#             test_model(model,testloader)
#             break
        if a % 100 == 0:
            print(a,acc(outputs,label))
#         break
#     break
0 0.8828125
100 0.921875
200 0.9296875
300 0.9296875
400 0.9140625
test_model(model,testloader)
print_sparse(model)
pt.save(model.state_dict(),"quantization.pt")
0.9384889240506329
-----------------------------------
Layer sparse
     conv1.weight 0.9375
     conv1.bias 0.890625
     conv2.weight 0.5333726671006944
     conv2.bias 0.4765625
     fc1.weight 0.0015011222995057398
     fc1.bias 0.0
     fc2.weight 0.5765625
     fc2.bias 0.7
Total: 0.01398429139292775

通过对量化中心的微调,2bit量化网络的准确率已经与非量化网络的准确率相当

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018.10.05 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 实验准备
    • 基础网络搭建
      • 基础网络训练
        • 准备数据集
        • 代价函数与优化器
        • 网络训练
        • 测试网络
        • 保存网络
    • 剪枝实验
      • 准备相关工具
        • 剪枝函数
        • 梯度剪枝函数
        • 稀疏度评估函数
      • 剪枝
        • 剪枝后微调
        • 量化实验
          • 量化
            • 微调
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档