Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >消息中间件—RocketMQ消息存储(二)一、RocketMQ存储整体设计架构回顾二、RocketMQ存储关键技术—再谈Mmap与PageCache三、RocketMQ存储优化技术四、RocketMQ

消息中间件—RocketMQ消息存储(二)一、RocketMQ存储整体设计架构回顾二、RocketMQ存储关键技术—再谈Mmap与PageCache三、RocketMQ存储优化技术四、RocketMQ

作者头像
用户2991389
发布于 2018-10-10 03:33:00
发布于 2018-10-10 03:33:00
5K3
举报

文章摘要:上篇中主要介绍了RocketMQ存储部分的整体架构设计,本篇将深入分析RocketMQ存储部分的细节内容 在本篇文章中,小编将继续深入分析与介绍RocketMQ消息存储部分中的关键技术—Mmap与PageCache、几种RocketMQ存储优化技术(包括预先创建分配MappedFile、文件预热和mlock系统调用)、RocketMQ内部封装类—CommitLog/MappedFile/MappedFileQueue/ConsumeQueue的简析。然后,再简要介绍下RocketMQ消息刷盘两种主要方式。在读完本篇幅后,希望读者能够对RocketMQ消息存储部分有一个更为深刻和全面的认识。

一、RocketMQ存储整体设计架构回顾

RocketMQ之所以能单机支持上万的持久化队列与其独特的存储结构是密不可分的,这里再来看下其文件存储的整体设计架构。(ps:之前看了@艾瑞克的《RocketMQ高性能之底层存储设计》觉得其表达方式和思路相当清晰,因此修改了下(一)篇中的“RocketMQ消息存储整体架构”)

RokcetMQ文件存储设计架构_v2.jpg

上面图中假设Consumer端默认设置的是同一个ConsumerGroup,因此Consumer端线程采用的是负载订阅的方式进行消费。从架构图中可以总结出如下几个关键点: (1)消息生产与消息消费相互分离,Producer端发送消息最终写入的是CommitLog(消息存储的日志数据文件),Consumer端先从ConsumeQueue(消息逻辑队列)读取持久化消息的起始物理位置偏移量offset、大小size和消息Tag的HashCode值,随后再从CommitLog中进行读取待拉取消费消息的真正实体内容部分; (2)RocketMQ的CommitLog文件采用混合型存储(所有的Topic下的消息队列共用同一个CommitLog的日志数据文件),并通过建立类似索引文件—ConsumeQueue的方式来区分不同Topic下面的不同MessageQueue的消息,同时为消费消息起到一定的缓冲作用(只有ReputMessageService异步服务线程通过doDispatch异步生成了ConsumeQueue队列的元素后,Consumer端才能进行消费)。这样,只要消息写入并刷盘至CommitLog文件后,消息就不会丢失,即使ConsumeQueue中的数据丢失,也可以通过CommitLog来恢复。 (3)RocketMQ每次读写文件的时候真的是完全顺序读写么?这里,发送消息时,生产者端的消息确实是顺序写入CommitLog;订阅消息时,消费者端也是顺序读取ConsumeQueue,然而根据其中的起始物理位置偏移量offset读取消息真实内容却是随机读取CommitLog。 在RocketMQ集群整体的吞吐量、并发量非常高的情况下,随机读取文件带来的性能开销影响还是比较大的,那么这里如何去优化和避免这个问题呢?后面的章节将会逐步来解答这个问题。 这里,同样也可以总结下RocketMQ存储架构的优缺点: (1)优点: a、ConsumeQueue消息逻辑队列较为轻量级; b、对磁盘的访问串行化,避免磁盘竟争,不会因为队列增加导致IOWAIT增高; (2)缺点: a、对于CommitLog来说写入消息虽然是顺序写,但是读却变成了完全的随机读; b、Consumer端订阅消费一条消息,需要先读ConsumeQueue,再读Commit Log,一定程度上增加了开销;

二、RocketMQ存储关键技术—再谈Mmap与PageCache

上篇中已经对Mmap内存映射技术(具体为JDK NIO的MappedByteBuffer)和PageCache概念进行了一定的深入分析。本节在回顾这两种技术的同时,从其他的维度来阐述上篇未涉及的细节点。

1.1、Mmap内存映射技术—MappedByteBuffer

(1)Mmap内存映射技术的特点 Mmap内存映射和普通标准IO操作的本质区别在于它并不需要将文件中的数据先拷贝至OS的内核IO缓冲区,而是可以直接将用户进程私有地址空间中的一块区域与文件对象建立映射关系,这样程序就好像可以直接从内存中完成对文件读/写操作一样。只有当缺页中断发生时,直接将文件从磁盘拷贝至用户态的进程空间内,只进行了一次数据拷贝。对于容量较大的文件来说(文件大小一般需要限制在1.5~2G以下),采用Mmap的方式其读/写的效率和性能都非常高。

Java NIO内存映射模型图.jpg

(2)JDK NIO的MappedByteBuffer简要分析 从JDK的源码来看,MappedByteBuffer继承自ByteBuffer,其内部维护了一个逻辑地址变量—address。在建立映射关系时,MappedByteBuffer利用了JDK NIO的FileChannel类提供的map()方法把文件对象映射到虚拟内存。仔细看源码中map()方法的实现,可以发现最终其通过调用native方法map0()完成文件对象的映射工作,同时使用Util.newMappedByteBuffer()方法初始化MappedByteBuffer实例,但最终返回的是DirectByteBuffer的实例。在Java程序中使用MappedByteBuffer的get()方法来获取内存数据是最终通过DirectByteBuffer.get()方法实现(底层通过unsafe.getByte()方法,以“地址 + 偏移量”的方式获取指定映射至内存中的数据)。 (3)使用Mmap的限制 a.Mmap映射的内存空间释放的问题;由于映射的内存空间本身就不属于JVM的堆内存区(Java Heap),因此其不受JVM GC的控制,卸载这部分内存空间需要通过系统调用 unmap()方法来实现。然而unmap()方法是FileChannelImpl类里实现的私有方法,无法直接显示调用。RocketMQ中的做法是,通过Java反射的方式调用“sun.misc”包下的Cleaner类的clean()方法来释放映射占用的内存空间; b.MappedByteBuffer内存映射大小限制;因为其占用的是虚拟内存(非JVM的堆内存),大小不受JVM的-Xmx参数限制,但其大小也受到OS虚拟内存大小的限制。一般来说,一次只能映射1.5~2G 的文件至用户态的虚拟内存空间,这也是为何RocketMQ默认设置单个CommitLog日志数据文件为1G的原因了; c.使用MappedByteBuffe的其他问题;会存在内存占用率较高和文件关闭不确定性的问题;

2.2、OS的PageCache机制

PageCache是OS对文件的缓存,用于加速对文件的读写。一般来说,程序对文件进行顺序读写的速度几乎接近于内存的读写访问,这里的主要原因就是在于OS使用PageCache机制对读写访问操作进行了性能优化,将一部分的内存用作PageCache。 (1)对于数据文件的读取,如果一次读取文件时出现未命中PageCache的情况,OS从物理磁盘上访问读取文件的同时,会顺序对其他相邻块的数据文件进行预读取(ps:顺序读入紧随其后的少数几个页面)。这样,只要下次访问的文件已经被加载至PageCache时,读取操作的速度基本等于访问内存。 (2)对于数据文件的写入,OS会先写入至Cache内,随后通过异步的方式由pdflush内核线程将Cache内的数据刷盘至物理磁盘上。 对于文件的顺序读写操作来说,读和写的区域都在OS的PageCache内,此时读写性能接近于内存。RocketMQ的大致做法是,将数据文件映射到OS的虚拟内存中(通过JDK NIO的MappedByteBuffer),写消息的时候首先写入PageCache,并通过异步刷盘的方式将消息批量的做持久化(同时也支持同步刷盘);订阅消费消息时(对CommitLog操作是随机读取),由于PageCache的局部性热点原理且整体情况下还是从旧到新的有序读,因此大部分情况下消息还是可以直接从Page Cache中读取,不会产生太多的缺页(Page Fault)中断而从磁盘读取。

RokcetMQ文件存储PageCache机制.jpg

PageCache机制也不是完全无缺点的,当遇到OS进行脏页回写,内存回收,内存swap等情况时,就会引起较大的消息读写延迟。 对于这些情况,RocketMQ采用了多种优化技术,比如内存预分配,文件预热,mlock系统调用等,来保证在最大可能地发挥PageCache机制优点的同时,尽可能地减少其缺点带来的消息读写延迟。

三、RocketMQ存储优化技术

这一节将主要介绍RocketMQ存储层采用的几项优化技术方案在一定程度上可以减少PageCache的缺点带来的影响,主要包括内存预分配,文件预热和mlock系统调用。

3.1 预先分配MappedFile

在消息写入过程中(调用CommitLog的putMessage()方法),CommitLog会先从MappedFileQueue队列中获取一个 MappedFile,如果没有就新建一个。 这里,MappedFile的创建过程是将构建好的一个AllocateRequest请求(具体做法是,将下一个文件的路径、下下个文件的路径、文件大小为参数封装为AllocateRequest对象)添加至队列中,后台运行的AllocateMappedFileService服务线程(在Broker启动时,该线程就会创建并运行),会不停地run,只要请求队列里存在请求,就会去执行MappedFile映射文件的创建和预分配工作,分配的时候有两种策略,一种是使用Mmap的方式来构建MappedFile实例,另外一种是从TransientStorePool堆外内存池中获取相应的DirectByteBuffer来构建MappedFile(ps:具体采用哪种策略,也与刷盘的方式有关)。并且,在创建分配完下个MappedFile后,还会将下下个MappedFile预先创建并保存至请求队列中等待下次获取时直接返回。RocketMQ中预分配MappedFile的设计非常巧妙,下次获取时候直接返回就可以不用等待MappedFile创建分配所产生的时间延迟。

预分配MappedFile的主要过程.jpg

3.2 文件预热&&mlock系统调用

(1)mlock系统调用:其可以将进程使用的部分或者全部的地址空间锁定在物理内存中,防止其被交换到swap空间。对于RocketMQ这种的高吞吐量的分布式消息队列来说,追求的是消息读写低延迟,那么肯定希望尽可能地多使用物理内存,提高数据读写访问的操作效率。 (2)文件预热:预热的目的主要有两点;第一点,由于仅分配内存并进行mlock系统调用后并不会为程序完全锁定这些内存,因为其中的分页可能是写时复制的。因此,就有必要对每个内存页面中写入一个假的值。其中,RocketMQ是在创建并分配MappedFile的过程中,预先写入一些随机值至Mmap映射出的内存空间里。第二,调用Mmap进行内存映射后,OS只是建立虚拟内存地址至物理地址的映射表,而实际并没有加载任何文件至内存中。程序要访问数据时OS会检查该部分的分页是否已经在内存中,如果不在,则发出一次缺页中断。这里,可以想象下1G的CommitLog需要发生多少次缺页中断,才能使得对应的数据才能完全加载至物理内存中(ps:X86的Linux中一个标准页面大小是4KB)?RocketMQ的做法是,在做Mmap内存映射的同时进行madvise系统调用,目的是使OS做一次内存映射后对应的文件数据尽可能多的预加载至内存中,从而达到内存预热的效果。

四、RocketMQ存储相关的模型与封装类简析

(1)CommitLog:消息主体以及元数据的存储主体,存储Producer端写入的消息主体内容。单个文件大小默认1G ,文件名长度为20位,左边补零,剩余为起始偏移量,比如00000000000000000000代表了第一个文件,起始偏移量为0,文件大小为1G=1073741824;当第一个文件写满了,第二个文件为00000000001073741824,起始偏移量为1073741824,以此类推。消息主要是顺序写入日志文件,当文件满了,写入下一个文件; (2) ConsumeQueue:消息消费的逻辑队列,其中包含了这个MessageQueue在CommitLog中的起始物理位置偏移量offset,消息实体内容的大小和Message Tag的哈希值。从实际物理存储来说,ConsumeQueue对应每个Topic和QueuId下面的文件。单个文件大小约5.72M,每个文件由30W条数据组成,每个文件默认大小为600万个字节,当一个ConsumeQueue类型的文件写满了,则写入下一个文件; (3)IndexFile:用于为生成的索引文件提供访问服务,通过消息Key值查询消息真正的实体内容。在实际的物理存储上,文件名则是以创建时的时间戳命名的,固定的单个IndexFile文件大小约为400M,一个IndexFile可以保存 2000W个索引; (4)MapedFileQueue:对连续物理存储的抽象封装类,源码中可以通过消息存储的物理偏移量位置快速定位该offset所在MappedFile(具体物理存储位置的抽象)、创建、删除MappedFile等操作; (5)MappedFile:文件存储的直接内存映射业务抽象封装类,源码中通过操作该类,可以把消息字节写入PageCache缓存区(commit),或者原子性地将消息持久化的刷盘(flush);

五、RocketMQ消息刷盘的主要过程

在RocketMQ中消息刷盘主要可以分为同步刷盘和异步刷盘两种。

RocketMQ同步&&异步刷盘两种方式.jpg

(1)同步刷盘:如上图所示,只有在消息真正持久化至磁盘后,RocketMQ的Broker端才会真正地返回给Producer端一个成功的ACK响应。同步刷盘对MQ消息可靠性来说是一种不错的保障,但是性能上会有较大影响,一般适用于金融业务应用领域。RocketMQ同步刷盘的大致做法是,基于生产者消费者模型,主线程创建刷盘请求实例—GroupCommitRequest并在放入刷盘写队列后唤醒同步刷盘线程—GroupCommitService,来执行刷盘动作(其中用了CAS变量和CountDownLatch来保证线程间的同步)。这里,RocketMQ源码中用读写双缓存队列(requestsWrite/requestsRead)来实现读写分离,其带来的好处在于内部消费生成的同步刷盘请求可以不用加锁,提高并发度。 (2)异步刷盘:能够充分利用OS的PageCache的优势,只要消息写入PageCache即可将成功的ACK返回给Producer端。消息刷盘采用后台异步线程提交的方式进行,降低了读写延迟,提高了MQ的性能和吞吐量。异步和同步刷盘的区别在于,异步刷盘时,主线程并不会阻塞,在将刷盘线程wakeup后,就会继续执行。

六、结语

在参考了@艾瑞克的那篇RocketMQ存储相关技术博文后,让我理解了公众号的文章与其他技术细节文章应该是有所区别的,公众号文章还是力求精简(ps:贴大量代码尤其需要慎重),篇幅太长会影响阅读体验,更多的内容应该以各种设计图和少量的文字为说明。同时,由于RocketMQ本身较为复杂,光看技术文章只能理解和领会一个大概,更多地还是需要自己多撸源码、Debug以及多实践才能对其有一个较为深入的理解。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018.09.30 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
3 条评论
热度
最新
“Java NIO内存映射模型图.jpg”有一些问题。Buffer IO也就是标准IO的数据通路是:byte[] -> off heap buffer -> page cache -> disk。mmap底层其实也是写page cache,的数据通路是:byte[] -> page cache -> disk。dio才是byte[]->disk。
“Java NIO内存映射模型图.jpg”有一些问题。Buffer IO也就是标准IO的数据通路是:byte[] -> off heap buffer -> page cache -> disk。mmap底层其实也是写page cache,的数据通路是:byte[] -> page cache -> disk。dio才是byte[]->disk。
回复回复点赞举报
感谢您的文章,有个问题想请教一下,kafka跟rocketmq一样适用pagecache局部性热点原理,只考虑读的情况下,为何kafka在topic数量大的时候就变成随机io了,而rocketmq还是基本上满足顺序io?
感谢您的文章,有个问题想请教一下,kafka跟rocketmq一样适用pagecache局部性热点原理,只考虑读的情况下,为何kafka在topic数量大的时候就变成随机io了,而rocketmq还是基本上满足顺序io?
11点赞举报
kafka文件多,每个Partition都是独立的文件,一个broker上可能N个topic,N*8个Partition。文件过多,就会造成不连续。
kafka文件多,每个Partition都是独立的文件,一个broker上可能N个topic,N*8个Partition。文件过多,就会造成不连续。
回复回复点赞举报
推荐阅读
编辑精选文章
换一批
Kafka和RocketMQ底层存储之那些你不知道的事
我们都知道 RocketMQ 和 Kafka 消息都是存在磁盘中的,那为什么消息存磁盘读写还可以这么快?有没有做了什么优化?都是存磁盘它们两者的实现之间有什么区别么?各自有什么优缺点? 今天我们就来一
程序员小猿
2021/01/19
7080
Kafka和RocketMQ底层存储之那些你不知道的事
RocketMQ(三):面对高并发请求,如何高效持久化消息?
上篇文章我们分析完RocketMQ发送消息的原理,得到结果客户端会通过RPC组件向Broker进行通信
菜菜的后端私房菜
2024/09/18
1.1K0
【详解文件IO系列】讲讲 MQ 消息中间件(Kafka,RocketMQ等与 MMAP、PageCache 的故事
首先来看一下一般的IO调用。在传统的文件IO操作中,我们都是调用操作系统提供的底层标准IO系统调用函数 read()、write() ,此时调用此函数的进程(在JAVA中即java进程)由当前的用户态切换到内核态,然后OS的内核代码负责将相应的文件数据读取到内核的IO缓冲区,然后再把数据从内核IO缓冲区拷贝到进程的私有地址空间中去,这样便完成了一次IO操作。如下图所示。
一个会写诗的程序员
2021/03/24
1.3K0
【详解文件IO系列】讲讲 MQ 消息中间件(Kafka,RocketMQ等与 MMAP、PageCache 的故事
3分钟白话RocketMQ系列—— 如何存储消息
RocketMQ使用了一种基于日志的存储方式,将消息以顺序写入的方式追加到文件中,从而实现高性能的消息存储和读取。
阿丸笔记
2023/10/22
5490
3分钟白话RocketMQ系列—— 如何存储消息
深度解读 RocketMQ 存储机制
RocketMQ 实现了灵活的多分区和多副本机制,有效的避免了集群内单点故障对于整体服务可用性的影响。存储机制和高可用策略是 RocketMQ 稳定性的核心,社区上关于 RocketMQ 目前存储实现的分析与讨论一直是一个热议的话题。近期我一直在负责 RocketMQ 消息多副本和高可用能力的建设,和大家分享下一些有趣的想法。
从大数据到人工智能
2022/09/08
7470
?【Alibaba中间件技术系列】「RocketMQ技术专题」服务底层高性能存储设计分析
消息中间件的本身定义来考虑,应该尽量减少对于外部第三方中间件的依赖。一般来说依赖的外部系统越多,也会使得本身的设计越复杂,采用文件系统作为消息存储的方式。
码界西柚
2022/01/23
7380
?【Alibaba中间件技术系列】「RocketMQ技术专题」服务底层高性能存储设计分析
深入剖析 RocketMQ 源码 - 消息存储模块
RocketMQ 是阿里巴巴开源的分布式消息中间件,它借鉴了 Kafka 实现,支持消息订阅与发布、顺序消息、事务消息、定时消息、消息回溯、死信队列等功能。RocketMQ 架构上主要分为四部分,如下图所示:
2020labs小助手
2021/11/09
1.5K0
消息的存储-RocketMQ知识体系3
上一篇了解了RocketMQ消息发送,本文开始聊聊消息发送到Broker端后,消息存储相关的逻辑。
DougWang
2021/07/21
5460
RocketMQ存储--消息追加【源码笔记】
commitLog内存(ByteBuffer)写入位点,标记消息写到哪了,下次从该位置开始写。
瓜农老梁
2019/08/20
9790
RocketMQ存储--消息追加【源码笔记】
万字聊一聊RocketMQ一条消息短暂而又精彩的一生
我们都知道,消息是由业务系统在运行过程产生的,当我们的业务系统产生了消息,我们就可以调用RocketMQ提供的API向RocketMQ发送消息,就像下面这样
三友的java日记
2024/06/07
1560
万字聊一聊RocketMQ一条消息短暂而又精彩的一生
面试系列之-rocketmq文件数据存储
Broker上的Topic上的消息都会顺序的写入到commitlog文件下,然后再异步转存到consumequeue以及indexFile文件;该消息的元信息存储着消息所在的Topic与Queue,当消费者要进行消费时,会通过ConsumerQueue文件来找到自己想要消费的队列;该队列不存储具体的消息,而是存储消息的基本信息与偏移量。消费者通过偏移量去CommitLog中找到自己需要消费的信息然后取出,就可以进行消费;并且Broker还可以对CommitLog来建立Hash索引文件IndexFile,这样就可以通过消息的key来找到消息;
用户4283147
2022/12/29
6910
面试系列之-rocketmq文件数据存储
消息中间件—RocketMQ消息存储(一)一、MQ消息队列的一般存储方式二、RocketMQ消息存储整体架构三、RocketMQ文件存储模型层次结构四、总结
文章摘要:MQ分布式消息队列大致流程在于消息的一发一收一存,本篇将为大家主要介绍下RocketMQ存储部分的架构 消息存储是MQ消息队列中最为复杂和最为重要的一部分,所以小编也就放在RocketMQ系列篇幅中最后一部分来进行阐述和介绍。本文先从目前几种比较常用的MQ消息队列存储方式出发,为大家介绍RocketMQ选择磁盘文件存储的原因。然后,本文分别从RocketMQ的消息存储整体架构和RocketMQ文件存储模型层次结构两方面进行深入分析介绍。使得大家读完本文后对RocketMQ消息存储部分有一个大致的了解和认识。 这里先回顾往期RocketMQ技术分享的篇幅(如果有童鞋没有读过之前的文章,建议先好好读下之前小编写的篇幅或者其他网上相关的博客,把RocketMQ消息发送和消费部分的流程先大致搞明白): (1)消息中间件—RocketMQ的RPC通信(一) (2)消息中间件—RocketMQ的RPC通信(二) (3)消息中间件—RocketMQ消息发送 (4)消息中间件—RocketMQ消息消费(一) (5)消息中间件—RocketMQ消息消费(二)(push模式实现) (6)消息中间件—RocketMQ消息消费(三)(消息消费重试)
用户2991389
2018/10/10
3.1K0
消息中间件—RocketMQ消息存储(一)一、MQ消息队列的一般存储方式二、RocketMQ消息存储整体架构三、RocketMQ文件存储模型层次结构四、总结
RocketMQ MappedFile 预热原理解析
从代码中可以看出,只有 MappedFile 的大小等于或大于 CommitLog 的大小并且开启文件预热功能才会预加载文件。 CommitLog 文件的大小默认为 1 G。
java404
2019/01/03
2.9K0
10 张图告诉你 RocketMQ 是怎样保存消息的
首先,在 RocketMQ 集群中创建一个 Topic,叫做 MyTestTopic,配置如下图:
jinjunzhu
2022/12/20
8810
10 张图告诉你 RocketMQ 是怎样保存消息的
RocketMQ原理—4.消息读写的性能优化
Producer发送消息时需要指定一个Topic,需要知道Topic里有哪些Queue,以及这些Queue分别分布在哪些Broker上。因此,Producer发送消息到Broker的流程如下:
东阳马生架构
2025/04/03
1150
RocketMQ-消息存储设计
消息存储是RocketMQ中最为复杂和最为重要的一部分,将分别从RocketMQ的消息存储整体架构、PageCache与Mmap内存映射以及RocketMQ中两种不同的刷盘方式三方面来分别展开叙述。
潇洒
2023/10/20
5820
RocketMQ-消息存储设计
RocketMQ原理—1.RocketMQ整体运行原理
这个介绍顺序就基本涵盖了RocketMQ的整体运行流程,接下来首先分析RocketMQ生产者的工作原理。
东阳马生架构
2025/04/01
890
天池中间件大赛百万队列存储设计总结【复赛】
维持了 20 天的复赛终于告一段落了,国际惯例先说结果,复赛结果不太理想,一度从第 10 名掉到了最后的第 36 名,主要是写入的优化卡了 5 天,一直没有进展,最终排名也是定格在了排行榜的第二页。痛定思痛,这篇文章将自己复赛中学习的知识,成功的优化,未成功的优化都罗列一下。
kirito-moe
2018/07/25
1K0
天池中间件大赛百万队列存储设计总结【复赛】
RocketMQ存储设计精髓
对于一款消息中间件来说,优良的数据存储设计,是实现高性能消息吞吐以及消息查询的关键所在。因为消息中间件对于外部来说就是发消息消费消息的一个平台基础设施,但是从其本身来说,需要将海量消息数据信息持久化在RocketMQ节点所在的服务器上,这样即便是服务器断电,重启等情况下,也不至于丢失消息数据。另外在进行消息消费的时候,RocketMQ如何能借助自身的存储设计快速检索到对应的消息也是非常重要的,因此本文主要对RocketMQ存储设计进行了设计分析。
慕枫技术笔记
2023/03/20
4050
RocketMQ存储设计精髓
RocketMQ为什么这么快?我从源码中扒出了10大原因!
如果你对RocketMQ还不了解,可以从公众号后台菜单栏中查看我之前写的关于RocketMQ的几篇文章
三友的java日记
2024/03/18
4520
RocketMQ为什么这么快?我从源码中扒出了10大原因!
推荐阅读
相关推荐
Kafka和RocketMQ底层存储之那些你不知道的事
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档