图解字符串匹配的KMP算法

一、前言

字符串匹配是计算机的基本任务之一。

举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

二、图解KMP算法

1、

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

2、

因为B与A不匹配,搜索词再往后移。

3、

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

4、

接着比较字符串和搜索词的下一个字符,还是相同。

5、

直到字符串有一个字符,与搜索词对应的字符不相同为止。

6、

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

7、

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

8、

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

9、

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

移动位数 = 已匹配的字符数 - 对应的部分匹配值

因为 6 - 2 等于4,所以将搜索词向后移动4位。

10、

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

11、

因为空格与A不匹配,继续后移一位。

12、

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

13、

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了

三、部分匹配值

下面介绍《部分匹配表》是如何产生的。

首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

- "A"的前缀和后缀都为空集,共有元素的长度为0;

- "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

- "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

- "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

- "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

- "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

- "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

四、几点说明

1、可能有些人会有这样的疑问:

如果

已匹配的字符数 = 0

同时

对应的部分匹配值 = 0.

移动位数 = 已匹配的字符数 - 对应的部分匹配值 = 0 - 0 = 0。这个时候移动的位数为0,那不是永远无法移动?

解答:如果第一个字符就不匹配,搜索词直接比较下一个字符,不用考虑《部分匹配表》。

2、这个部分匹配表的值,相当于我们代码实现中的next数组的值。

3、我不给出代码实现了,希望大家能根据这个思路,不看别人的代码实现一遍,之后你也可以手写kmp字符匹配算法了。

原文发布于微信公众号 - 苦逼的码农(di201805)

原文发表时间:2018-10-04

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏向治洪

Kotlin之基本语法

在今年Google IO大会上Google已经明确kotlin作为为Android第一官方语言的地位。我相信Google的决意,就像当初毫不犹豫的抛弃eclip...

26570
来自专栏Phoenix的Android之旅

Kotlin的循环控制

所有的计算机程序总结起来只干了三件事情,顺序,条件,循环。 在Java中可以用 break, continue, return来进行循环控制,Kotlin中也是...

5910
来自专栏一个会写诗的程序员的博客

第5章 函数与函数式编程第5章 函数与函数式编程

函数式编程语言最重要的基础是λ演算(lambda calculus),而且λ演算的函数可以传入函数参数,也可以返回一个函数。函数式编程 (简称FP) 是一种编程...

6610
来自专栏Python爱好者

Java基础笔记02

21820
来自专栏司想君

JavaScript闭包,只学这篇就会了

昨天发的文章,排版出现了重大失误。让大家的眼睛受累了。今天再发一遍。 这篇文章使用一些简单的代码例子来解释JavaScript闭包的概念,即使新手也可以轻松参透...

28780
来自专栏CSDN技术头条

在下函数式编程,有何贵干?

本文简单介绍了一下函数式编程的各种基本特性,希望能够对于准备使用函数式编程的人起到一定入门作用。 ? 函数式编程,一个一直以来都酷,很酷,非常酷的名词。虽然诞生...

20570
来自专栏一个会写诗的程序员的博客

《Kotlin极简教程》第二章 Hello,World 函数函数

9730
来自专栏ACM算法日常

字符串展开(递归)- HDU 1274

常用纱线的品种一般不会超过25种,分别可以用小写字母表示不同的纱线,例如:abc表示三根纱线的排列;重复可以用数字和括号表示,例如:2(abc)表示abcabc...

9620
来自专栏阮一峰的网络日志

字符串匹配的KMP算法

字符串匹配是计算机的基本任务之一。 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD...

52860
来自专栏我和PYTHON有个约会

26. 企业级开发基础7:面向对象特征(多态)

多态是让我们的程序在运行的过程中,在不同的状态下进行动态的切换,实现复杂的功能为目的的一种程序开发手段

7410

扫码关注云+社区

领取腾讯云代金券