作者:IOExceptioner
本文继续一起搞定面试中的二叉树(一)一文总结二叉树相关的面试题。
12. 二叉树的前序遍历
迭代解法
ArrayList<Integer> preOrder(TreeNode root){ Stack<TreeNode> stack = new Stack<TreeNode>(); ArrayList<Integer> list = new ArrayList<Integer>(); if(root == null){ return list; } stack.push(root); while(!stack.empty()){ TreeNode node = stack.pop(); list.add(node.val); if(node.right!=null){ stack.push(node.right); } if(node.left != null){ stack.push(node.left); } } return list; }
递归解法
ArrayList<Integer> preOrderReverse(TreeNode root){ ArrayList<Integer> result = new ArrayList<Integer>(); preOrder2(root,result); return result; } void preOrder2(TreeNode root,ArrayList<Integer> result){ if(root == null){ return; } result.add(root.val); preOrder2(root.left,result); preOrder2(root.right,result); }
13. 二叉树的中序遍历
ArrayList<Integer> inOrder(TreeNode root){ ArrayList<Integer> list = new ArrayList<<Integer>(); Stack<TreeNode> stack = new Stack<TreeNode>(); TreeNode current = root; while(current != null|| !stack.empty()){ while(current != null){ stack.add(current); current = current.left; } current = stack.peek(); stack.pop(); list.add(current.val); current = current.right; } return list; }
14.二叉树的后序遍历
ArrayList<Integer> postOrder(TreeNode root){ ArrayList<Integer> list = new ArrayList<Integer>(); if(root == null){ return list; } list.addAll(postOrder(root.left)); list.addAll(postOrder(root.right)); list.add(root.val); return list; }
15.前序遍历和后序遍历构造二叉树
TreeNode buildTreeNode(int[] preorder,int[] inorder){ if(preorder.length!=inorder.length){ return null; } return myBuildTree(inorder,0,inorder.length-1,preorder,0,preorder.length-1); } TreeNode myBuildTree(int[] inorder,int instart,int inend,int[] preorder,int prestart,int preend){ if(instart>inend){ return null; } TreeNode root = new TreeNode(preorder[prestart]); int position = findPosition(inorder,instart,inend,preorder[start]); root.left = myBuildTree(inorder,instart,position-1,preorder,prestart+1,prestart+position-instart); root.right = myBuildTree(inorder,position+1,inend,preorder,position-inend+preend+1,preend); return root; } int findPosition(int[] arr,int start,int end,int key){ int i; for(i = start;i<=end;i++){ if(arr[i] == key){ return i; } } return -1; }
16.在二叉树中插入节点
TreeNode insertNode(TreeNode root,TreeNode node){ if(root == node){ return node; } TreeNode tmp = new TreeNode(); tmp = root; TreeNode last = null; while(tmp!=null){ last = tmp; if(tmp.val>node.val){ tmp = tmp.left; }else{ tmp = tmp.right; } } if(last!=null){ if(last.val>node.val){ last.left = node; }else{ last.right = node; } } return root; }
17.输入一个二叉树和一个整数,打印出二叉树中节点值的和等于输入整数所有的路径
void findPath(TreeNode r,int i){ if(root == null){ return; } Stack<Integer> stack = new Stack<Integer>(); int currentSum = 0; findPath(r, i, stack, currentSum); } void findPath(TreeNode r,int i,Stack<Integer> stack,int currentSum){ currentSum+=r.val; stack.push(r.val); if(r.left==null&&r.right==null){ if(currentSum==i){ for(int path:stack){ System.out.println(path); } } } if(r.left!=null){ findPath(r.left, i, stack, currentSum); } if(r.right!=null){ findPath(r.right, i, stack, currentSum); } stack.pop(); }
18.二叉树的搜索区间
给定两个值 k1 和 k2(k1 < k2)和一个二叉查找树的根节点。找到树中所有值在 k1 到 k2 范围内的节点。即打印所有x (k1 <= x <= k2) 其中 x 是二叉查找树的中的节点值。返回所有升序的节点值。
ArrayList<Integer> result; ArrayList<Integer> searchRange(TreeNode root,int k1,int k2){ result = new ArrayList<Integer>(); searchHelper(root,k1,k2); return result; } void searchHelper(TreeNode root,int k1,int k2){ if(root == null){ return; } if(root.val>k1){ searchHelper(root.left,k1,k2); } if(root.val>=k1&&root.val<=k2){ result.add(root.val); } if(root.val<k2){ searchHelper(root.right,k1,k2); } }
19.二叉树的层次遍历
ArrayList<ArrayList<Integer>> levelOrder(TreeNode root){ ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>(); if(root == null){ return result; } Queue<TreeNode> queue = new LinkedList<TreeNode>(); queue.offer(root); while(!queue.isEmpty()){ int size = queue.size(); ArrayList<<Integer> level = new ArrayList<Integer>(): for(int i = 0;i < size ;i++){ TreeNode node = queue.poll(); level.add(node.val); if(node.left != null){ queue.offer(node.left); } if(node.right != null){ queue.offer(node.right); } } result.add(Level); } return result; }
20.二叉树内两个节点的最长距离
二叉树中两个节点的最长距离可能有三种情况: 1.左子树的最大深度+右子树的最大深度为二叉树的最长距离 2.左子树中的最长距离即为二叉树的最长距离 3.右子树种的最长距离即为二叉树的最长距离 因此,递归求解即可
private static class Result{ int maxDistance; int maxDepth; public Result() { } public Result(int maxDistance, int maxDepth) { this.maxDistance = maxDistance; this.maxDepth = maxDepth; } } int getMaxDistance(TreeNode root){ return getMaxDistanceResult(root).maxDistance; } Result getMaxDistanceResult(TreeNode root){ if(root == null){ Result empty = new Result(0,-1); return empty; } Result lmd = getMaxDistanceResult(root.left); Result rmd = getMaxDistanceResult(root.right); Result result = new Result(); result.maxDepth = Math.max(lmd.maxDepth,rmd.maxDepth) + 1; result.maxDistance = Math.max(lmd.maxDepth + rmd.maxDepth,Math.max(lmd.maxDistance,rmd.maxDistance)); return result; }
21.不同的二叉树
给出 n,问由 1…n 为节点组成的不同的二叉查找树有多少种?
int numTrees(int n ){ int[] counts = new int[n+2]; counts[0] = 1; counts[1] = 1; for(int i = 2;i<=n;i++){ for(int j = 0;j<i;j++){ counts[i] += counts[j] * counts[i-j-1]; } } return counts[n]; }
22.判断二叉树是否是合法的二叉查找树(BST)
一棵BST定义为: 节点的左子树中的值要严格小于该节点的值。 节点的右子树中的值要严格大于该节点的值。 左右子树也必须是二叉查找树。 一个节点的树也是二叉查找树。
public int lastVal = Integer.MAX_VALUE; public boolean firstNode = true; public boolean isValidBST(TreeNode root) { // write your code here if(root==null){ return true; } if(!isValidBST(root.left)){ return false; } if(!firstNode&&lastVal >= root.val){ return false; } firstNode = false; lastVal = root.val; if (!isValidBST(root.right)) { return false; } return true; }
深刻的理解这些题的解法思路,在面试中的二叉树题目就应该没有什么问题。
本文分享自微信公众号 - Python专栏(xpchuiit),作者:上海小胖
原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。
原始发表时间:2018-10-02
本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。
我来说两句