1 基本实现原理
1.1 如何使用
1.2 设计思想
2 自定义同步器
2.1 同步器代码实现
2.2 同步器代码测试
3 源码分析
3.1 Node结点
3.2 独占式
3.3 共享式
4 总结
Java并发包(JUC)中提供了很多并发工具,这其中,很多我们耳熟能详的并发工具,譬如ReentrangLock、Semaphore,它们的实现都用到了一个共同的基类--AbstractQueuedSynchronizer,简称AQS。AQS是一个用来构建锁和同步器的框架,使用AQS能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的ReentrantLock,Semaphore,其他的诸如ReentrantReadWriteLock,SynchronousQueue,FutureTask等等皆是基于AQS的。当然,我们自己也能利用AQS非常轻松容易地构造出符合我们自己需求的同步器。
本章我们就一起探究下这个神奇的东东,并对其实现原理进行剖析理解
AQS使用一个int成员变量来表示同步状态,通过内置的FIFO队列来完成获取资源线程的排队工作。
private volatile int state;//共享变量,使用volatile修饰保证线程可见性
状态信息通过procted类型的getState,setState,compareAndSetState进行操作
AQS支持两种同步方式:
1.独占式
2.共享式
这样方便使用者实现不同类型的同步组件,独占式如ReentrantLock,共享式如Semaphore,CountDownLatch,组合式的如ReentrantReadWriteLock。总之,AQS为使用提供了底层支撑,如何组装实现,使用者可以自由发挥。
同步器的设计是基于模板方法模式的,一般的使用方式是这样:
1.使用者继承AbstractQueuedSynchronizer并重写指定的方法。(这些重写方法很简单,无非是对于共享资源state的获取和释放)
2.将AQS组合在自定义同步组件的实现中,并调用其模板方法,而这些模板方法会调用使用者重写的方法。
这其实是模板方法模式的一个很经典的应用。
我们来看看AQS定义的这些可重写的方法:
protected boolean tryAcquire(int arg) : 独占式获取同步状态,试着获取,成功返回true,反之为false
protected boolean tryRelease(int arg) :独占式释放同步状态,等待中的其他线程此时将有机会获取到同步状态;
protected int tryAcquireShared(int arg) :共享式获取同步状态,返回值大于等于0,代表获取成功;反之获取失败;
protected boolean tryReleaseShared(int arg) :共享式释放同步状态,成功为true,失败为false
protected boolean isHeldExclusively() : 是否在独占模式下被线程占用。
关于AQS的使用,我们来简单总结一下:
如何使用
首先,我们需要去继承AbstractQueuedSynchronizer这个类,然后我们根据我们的需求去重写相应的方法,比如要实现一个独占锁,那就去重写tryAcquire,tryRelease方法,要实现共享锁,就去重写tryAcquireShared,tryReleaseShared;最后,在我们的组件中调用AQS中的模板方法就可以了,而这些模板方法是会调用到我们之前重写的那些方法的。也就是说,我们只需要很小的工作量就可以实现自己的同步组件,重写的那些方法,仅仅是一些简单的对于共享资源state的获取和释放操作,至于像是获取资源失败,线程需要阻塞之类的操作,自然是AQS帮我们完成了。
设计思想
对于使用者来讲,我们无需关心获取资源失败,线程排队,线程阻塞/唤醒等一系列复杂的实现,这些都在AQS中为我们处理好了。我们只需要负责好自己的那个环节就好,也就是获取/释放共享资源state的姿势T_T。很经典的模板方法设计模式的应用,AQS为我们定义好顶级逻辑的骨架,并提取出公用的线程入队列/出队列,阻塞/唤醒等一系列复杂逻辑的实现,将部分简单的可由使用者决定的操作逻辑延迟到子类中去实现即可。
同步器代码实现
上面大概讲了一些关于AQS如何使用的理论性的东西,接下来,我们就来看下实际如何使用,直接采用JDK官方文档中的小例子来说明问题
同步器代码测试
测试下这个自定义的同步器,我们使用之前文章中做过的并发环境下a++的例子来说明问题(a++的原子性其实最好使用原子类AtomicInteger来解决,此处用Mutex有点大炮打蚊子的意味,好在能说明问题就好)
TestMutex
测试结果:
加锁前,a=279204
加锁后,a=300000
我们先来简单描述下AQS的基本实现,前面我们提到过,AQS维护一个共享资源state,通过内置的FIFO来完成获取资源线程的排队工作。(这个内置的同步队列称为"CLH"队列)。该队列由一个一个的Node结点组成,每个Node结点维护一个prev引用和next引用,分别指向自己的前驱和后继结点。AQS维护两个指针,分别指向队列头部head和尾部tail。
其实就是个双端双向链表。
当线程获取资源失败(比如tryAcquire时试图设置state状态失败),会被构造成一个结点加入CLH队列中,同时当前线程会被阻塞在队列中(通过LockSupport.park实现,其实是等待态)。当持有同步状态的线程释放同步状态时,会唤醒后继结点,然后此结点线程继续加入到对同步状态的争夺中。
Node结点
Node结点是AbstractQueuedSynchronizer中的一个静态内部类,我们捡Node的几个重要属性来说一下
独占式
获取同步状态--acquire()
来看看acquire方法,lock方法一般会直接代理到acquire上
1 public final void acquire(int arg) {
2 if (!tryAcquire(arg) &&
3 acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
4 selfInterrupt();
5 }
我们来简单理一下代码逻辑:
a.首先,调用使用者重写的tryAcquire方法,若返回true,意味着获取同步状态成功,后面的逻辑不再执行;若返回false,也就是获取同步状态失败,进入b步骤;
b.此时,获取同步状态失败,构造独占式同步结点,通过addWatiter将此结点添加到同步队列的尾部(此时可能会有多个线程结点试图加入同步队列尾部,需要以线程安全的方 式添加);
c.该结点以在队列中尝试获取同步状态,若获取不到,则阻塞结点线程,直到被前驱结点唤醒或者被中断。
addWaiter
为获取同步状态失败的线程,构造成一个Node结点,添加到同步队列尾部
先cas快速设置,若失败,进入enq方法
将结点添加到同步队列尾部这个操作,同时可能会有多个线程尝试添加到尾部,是非线程安全的操作。
以上代码可以看出,使用了compareAndSetTail这个cas操作保证安全添加尾结点。
enq方法
enq内部是个死循环,通过CAS设置尾结点,不成功就一直重试。很经典的CAS自旋的用法,我们在之前关于原子类的源码分析中也提到过。这是一种乐观的并发策略。
最后,看下acquireQueued方法
acquireQueued
acquireQueued内部也是一个死循环,只有前驱结点是头结点的结点,也就是老二结点,才有机会去tryAcquire;若tryAcquire成功,表示获取同步状态成功,将此结点设置为头结点;若是非老二结点,或者tryAcquire失败,则进入shouldParkAfterFailedAcquire去判断判断当前线程是否应该阻塞,若可以,调用parkAndCheckInterrupt阻塞当前线程,直到被中断或者被前驱结点唤醒。若还不能休息,继续循环。
shouldParkAfterFailedAcquire
shouldParkAfterFailedAcquire用来判断当前结点线程是否能休息
若shouldParkAfterFailedAcquire返回true,也就是当前结点的前驱结点为SIGNAL状态,则意味着当前结点可以放心休息,进入parking状态了。parkAncCheckInterrupt阻塞线程并处理中断。
至此,关于acquire的方法源码已经分析完毕,我们来简单总结下
a.首先tryAcquire获取同步状态,成功则直接返回;否则,进入下一环节;
b.线程获取同步状态失败,就构造一个结点,加入同步队列中,这个过程要保证线程安全;
c.加入队列中的结点线程进入自旋状态,若是老二结点(即前驱结点为头结点),才有机会尝试去获取同步状态;否则,当其前驱结点的状态为SIGNAL,线程便可安心休息,进入阻塞状态,直到被中断或者被前驱结点唤醒。
释放同步状态--release()
当前线程执行完自己的逻辑之后,需要释放同步状态,来看看release方法的逻辑
unparkSuccessor:唤醒后继结点
release的同步状态相对简单,需要找到头结点的后继结点进行唤醒,若后继结点为空或处于CANCEL状态,从后向前遍历找寻一个正常的结点,唤醒其对应线程。
共享式
共享式:共享式地获取同步状态。对于独占式同步组件来讲,同一时刻只有一个线程能获取到同步状态,其他线程都得去排队等待,其待重写的尝试获取同步状态的方法tryAcquire返回值为boolean,这很容易理解;对于共享式同步组件来讲,同一时刻可以有多个线程同时获取到同步状态,这也是“共享”的意义所在。其待重写的尝试获取同步状态的方法tryAcquireShared返回值为int。
1.当返回值大于0时,表示获取同步状态成功,同时还有剩余同步状态可供其他线程获取;
2.当返回值等于0时,表示获取同步状态成功,但没有可用同步状态了;
3.当返回值小于0时,表示获取同步状态失败。
获取同步状态--acquireShared
doAcquireShared
大体逻辑与独占式的acquireQueued差距不大,只不过由于是共享式,会有多个线程同时获取到线程,也可能同时释放线程,空出很多同步状态,所以当排队中的老二获取到同步状态,如果还有可用资源,会继续传播下去。
setHeadAndPropagate
释放同步状态--releaseShared
doReleaseShared
代码逻辑比较容易理解,需要注意的是,共享模式,释放同步状态也是多线程的,此处采用了CAS自旋来保证。
关于AQS的介绍及源码分析到此为止了。
AQS是JUC中很多同步组件的构建基础,简单来讲,它内部实现主要是状态变量state和一个FIFO队列来完成,同步队列的头结点是当前获取到同步状态的结点,获取同步状态state失败的线程,会被构造成一个结点(或共享式或独占式)加入到同步队列尾部(采用自旋CAS来保证此操作的线程安全),随后线程会阻塞;释放时唤醒头结点的后继结点,使其加入对同步状态的争夺中。
AQS为我们定义好了顶层的处理实现逻辑,我们在使用AQS构建符合我们需求的同步组件时,只需重写tryAcquire,tryAcquireShared,tryRelease,tryReleaseShared几个方法,来决定同步状态的释放和获取即可,至于背后复杂的线程排队,线程阻塞/唤醒,如何保证线程安全,都由AQS为我们完成了,这也是非常典型的模板方法的应用。AQS定义好顶级逻辑的骨架,并提取出公用的线程入队列/出队列,阻塞/唤醒等一系列复杂逻辑的实现,将部分简单的可由使用者决定的操作逻辑延迟到子类中去实现。
给大家推荐一个程序员学习交流群:863621962。群里有分享的视频,还有思维导图
群公告有视频,都是干货的,你可以下载来看。主要分享分布式架构、高可扩展、高性能、高并发、性能优化、Spring boot、Redis、ActiveMQ、Nginx、Mycat、Netty、Jvm大型分布式项目实战学习架构师视频。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。