JavaScript 浮点数陷阱及解法

众所周知,JavaScript 浮点数运算时经常遇到会 0.0000000010.999999999 这样奇怪的结果,如 0.1+0.2=0.300000000000000041-0.9=0.09999999999999998,很多人知道这是浮点数误差问题,但具体就说不清楚了。本文帮你理清这背后的原理以及解决方案,还会向你解释JS中的大数危机和四则运算中会遇到的坑。

浮点数的存储

首先要搞清楚 JavaScript 如何存储小数。和其它语言如 Java 和 Python 不同,JavaScript 中所有数字包括整数和小数都只有一种类型 — Number。它的实现遵循 IEEE 754 标准,使用 64 位固定长度来表示,也就是标准的 double 双精度浮点数(相关的还有float 32位单精度)。计算机组成原理中有过详细介绍,如果你不记得也没关系。

这样的存储结构优点是可以归一化处理整数和小数,节省存储空间。

64位比特又可分为三个部分:

  • 符号位S:第 1 位是正负数符号位(sign),0代表正数,1代表负数
  • 指数位E:中间的 11 位存储指数(exponent),用来表示次方数
  • 尾数位M:最后的 52 位是尾数(mantissa),超出的部分自动进一舍零

实际数字就可以用以下公式来计算:

注意以上的公式遵循科学计数法的规范,在十进制是为0<M<10,到二进行就是0<M<2。也就是说整数部分只能是1,所以可以被舍去,只保留后面的小数部分。如 4.5 转换成二进制就是 100.1,科学计数法表示是 1.001*2^2,舍去1后 M = 001。E是一个无符号整数,因为长度是11位,取值范围是 0~2047。但是科学计数法中的指数是可以为负数的,所以再减去一个中间数 1023,[0,1022]表示为负,[1024,2047] 表示为正。如 4.5 的指数 E = 1025,尾数M为 001。

最终的公式变成:

所以 4.5 最终表示为(M=001、E=1025):

(图片由此生成 http://www.binaryconvert.com/convert_double.html)

下面再以 0.1 例解释浮点误差的原因, 0.1 转成二进制表示为 0.0001100110011001100(1100循环),1.100110011001100x2^-4,所以 E=-4+1023=1019;M 舍去首位的1,得到 100110011...。最终就是:

转化成十进制后为 0.100000000000000005551115123126,因此就出现了浮点误差。

为什么 `0.1+0.2=0.30000000000000004`?

计算步骤为:

// 0.1 和 0.2 都转化成二进制后再进行运算
0.00011001100110011001100110011001100110011001100110011010 +
0.0011001100110011001100110011001100110011001100110011010 =
0.0100110011001100110011001100110011001100110011001100111

// 转成十进制正好是 0.30000000000000004

为什么 `x=0.1` 能得到 `0.1`?

恭喜你到了看山不是山的境界。因为 mantissa 固定长度是 52 位,再加上省略的一位,最多可以表示的数是 2^53=9007199254740992,对应科学计数尾数是 9.007199254740992,这也是 JS 最多能表示的精度。它的长度是 16,所以可以使用 toPrecision(16) 来做精度运算,超过的精度会自动做凑整处理。于是就有:

0.10000000000000000555.toPrecision(16)
// 返回 0.1000000000000000,去掉末尾的零后正好为 0.1

// 但你看到的 `0.1` 实际上并不是 `0.1`。不信你可用更高的精度试试:
0.1.toPrecision(21) = 0.100000000000000005551

大数危机

可能你已经隐约感觉到了,如果整数大于 9007199254740992 会出现什么情况呢? 由于 E 最大值是 1023,所以最大可以表示的整数是 2^1024 - 1,这就是能表示的最大整数。但你并不能这样计算这个数字,因为从 2^1024 开始就变成了 Infinity

> Math.pow(2, 1023)
8.98846567431158e+307

> Math.pow(2, 1024)
Infinity

那么对于 (2^53, 2^63) 之间的数会出现什么情况呢?

  • (2^53, 2^54) 之间的数会两个选一个,只能精确表示偶数
  • (2^54, 2^55) 之间的数会四个选一个,只能精确表示4个倍数
  • … 依次跳过更多2的倍数

下面这张图能很好的表示 JavaScript 中浮点数和实数(Real Number)之间的对应关系。我们常用的 (-2^53, 2^53) 只是最中间非常小的一部分,越往两边越稀疏越不精确。

在淘宝早期的订单系统中把订单号当作数字处理,后来随意订单号暴增,已经超过了 9007199254740992,最终的解法是把订单号改成字符串处理。

要想解决大数的问题你可以引用第三方库 bignumber.js,原理是把所有数字当作字符串,重新实现了计算逻辑,缺点是性能比原生的差很多。所以原生支持大数就很有必要了,现在 TC39 已经有一个 Stage 3 的提案 proposal bigint,大数问题有望彻底解决。在浏览器正式支持前,可以使用 Babel 7.0 来实现,它的内部是自动转换成 big-integer 来计算,要注意的是这样能保持精度但运算效率会降低。

toPrecision vs toFixed

数据处理时,这两个函数很容易混淆。它们的共同点是把数字转成字符串供展示使用。注意在计算的中间过程不要使用,只用于最终结果。

不同点就需要注意一下:

  • toPrecision 是处理精度,精度是从左至右第一个不为0的数开始数起。
  • toFixed 是小数点后指定位数取整,从小数点开始数起。

两者都能对多余数字做凑整处理,也有些人用 toFixed 来做四舍五入,但一定要知道它是有 Bug 的。

如:1.005.toFixed(2) 返回的是 1.00 而不是 1.01

原因:1.005 实际对应的数字是 1.00499999999999989,在四舍五入时全部被舍去!

解法:使用专业的四舍五入函数Math.round() 来处理。但 Math.round(1.005 * 100) / 100 还是不行,因为 1.005 * 100 = 100.49999999999999。还需要把乘法和除法精度误差都解决后再使用 Math.round。可以使用后面介绍的 number-precision#round 方法来解决。

解决方案

回到最关心的问题:如何解决浮点误差。首先,理论上用有限的空间来存储无限的小数是不可能保证精确的,但我们可以处理一下得到我们期望的结果。

数据展示类

当你拿到 1.4000000000000001 这样的数据要展示时,建议使用 toPrecision 凑整并 parseFloat 转成数字后再显示,如下:

parseFloat(1.4000000000000001.toPrecision(12)) === 1.4  // True

封装成方法就是:

function strip(num, precision = 12) {
  return +parseFloat(num.toPrecision(precision));
}

为什么选择 12 做为默认精度?这是一个经验的选择,一般选12就能解决掉大部分0001和0009问题,而且大部分情况下也够用了,如果你需要更精确可以调高。

数据运算类

对于运算类操作,如 +-*/,就不能使用 toPrecision 了。正确的做法是把小数转成整数后再运算。以加法为例:

/**
 * 精确加法
 */
function add(num1, num2) {
  const num1Digits = (num1.toString().split('.')[1] || '').length;
  const num2Digits = (num2.toString().split('.')[1] || '').length;
  const baseNum = Math.pow(10, Math.max(num1Digits, num2Digits));
  return (num1 * baseNum + num2 * baseNum) / baseNum;
}

以上方法能适用于大部分场景。遇到科学计数法如 2.3e+1(当数字精度大于21时,数字会强制转为科学计数法形式显示)时还需要特别处理一下。

能读到这里,说明你非常有耐心,那我就放个福利吧。遇到浮点数误差问题时可以直接使用 https://github.com/dt-fe/number-precision

完美支持浮点数的加减乘除、四舍五入等运算。非常小只有1K,远小于绝大多数同类库(如Math.js、BigDecimal.js),100%测试全覆盖,代码可读性强,不妨在你的应用里用起来!

参考

  • Double-precision floating-point format
  • What Every Programmer Should Know About Floating-Point Arithmetic
  • Why Computers are Bad at Algebra | Infinite Series
  • Is Your Model Susceptible to Floating-Point Errors?

原文发布于微信公众号 - 前端布道(FontendPreach)

原文发表时间:2018-10-05

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏zaking's

js算法初窥03(搜索及去重算法)

1292
来自专栏数据结构与算法

群论入门

这东西一时半会儿写不完。。。 群 定义集合 ,*为集合G上的二元运算 当集合G在运算*之下满足一下性质时,我们称集合G在运算*之下是一个群,简称G是群 封闭性...

3545
来自专栏算法channel

机器学习|快速排序思想求topk

01 — Topk by quicksort 问题是求出数据集中,按照某个规则定义的元素大小,取前k个元素。 为了简化起见,直接求数值型数组的前k个最大元素。...

5418
来自专栏数据结构与算法

P3818 小A和uim之大逃离 II

题目背景 话说上回……还是参见 https://www.luogu.org/problem/show?pid=1373 吧 小a和uim再次来到雨林中探险。突然...

3097
来自专栏好好学java的技术栈

“365算法每日学计划”:java语言基础题目及解答(01-05打卡)

如果有小伙伴很少接触到这种题目的话,可能会觉得有点陌生,不知道从何下手,可能一开始我们能想到“最笨”的方法,但是也觉得挺有“娱乐性”的方法。

1595
来自专栏西枫里博客

Python学习笔记十一(递归)

本次学习先回顾了前两天的lambda表达式,使用lambda表达式创建匿名函数。接着学习本次课程的内容:Python的递归。什么是递归,程序调用自身的编程方法叫...

772
来自专栏数据结构与算法

1269 匈牙利游戏 2012年CCC加拿大高中生信息学奥赛

1269 匈牙利游戏 2012年CCC加拿大高中生信息学奥赛 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond...

45010
来自专栏数据结构与算法

Debug

复杂度证明 普通莫队时间复杂度为 证明: 当我们第i个询问转移的第i+1个询问时 如果第i个询问区间和第i+1个询问区间的左端点所在块的编号相同,那么左端...

35111
来自专栏移动端开发

快速排序OC、Swift版源码

前言: 你要问我学学算法在工作当中有什么用,说实话,当达不到那个地步的时候,可能我们不能直接的感觉到它的用处!你就抱着这样一个心态,当一些APP中涉及到算法...

2218
来自专栏海天一树

NOIP 2018普及组初赛C/C++答案详解

1 D 打印机是把电脑里的资料打印到纸上,所以是输出设备。 扫描仪、键盘和鼠标都是往电脑里输入东西,是输入设备。

2163

扫码关注云+社区

领取腾讯云代金券