381页机器学习数学基础PDF下载

【导读】近期,由Marc Peter Deisenroth,A Aldo Faisal和Cheng Soon Ong撰写的《机器学习数学基础》“Mathematics for Machine Learning” 381页草稿版本已经放出,作者表示撰写这本书旨在激励人们学习数学概念。这本书并不打算涵盖前沿的机器学习技术,因为已经有很多书这样做了。相反,作者的目标是通过该书提供阅读其他书籍所需的数学基础。这本书分为两部分:数学基础知识和使用数学基础知识进行机器学习算法示例。值得初学者收藏和学习!

前言(Foreword)

随着机器学习变得越来越普遍,它的软件包也越来越容易使用。一些低级的技术细节被抽象出来,并对实践者隐藏起来,这是很自然的,也是可取的。然而,这带来了一些风险,即实践者不知道设计决策,因此不知道机器学习算法的局限性。

有兴趣了解机器学习算法背后机制的实践者需要具备如下的先验知识:

  • 编程语言和数据分析工具
  • 大规模计算和相关框架
  • 数学和统计学知识,以及机器学习是如何基于这些知识构建的

在大学里,关于机器学习的入门课程往往会在课程的早期部分涉及到以上这些先验知识。由于历史原因,机器学习的课程倾向于在计算机科学系进行授课。在计算机科学系,学生通常在前两个知识领域受到的训练比较多,但在数学和统计学方面的训练较少。目前的一些机器学习教科书试图加入一到两章的内容来介绍数学背景知识,但是这些介绍要么在书的开头,要么作为附录。本书将机器学习中的数学基础知识放在首位,并且信息相对集中。

【为什么要写一本关于机器学习的书?】

机器学习建立在数学语言的基础上,用来表达直观上显而易见但却难以形式化的概念。一旦正确地形式化,我们就可以使用数学工具来得出我们设计选择的结果。这使我们能够深入了解我们正在解决的任务以及智能的本质。全球数学系学生普遍抱怨的一个问题是,数学所涵盖的主题似乎与实际问题没有太多关联。我们认为机器学习是人们学习数学的一个明显而直接的动机。

作者希望这本书可以成为一本指导机器学习大量数学基础的指南。作者通过直接指出数学概念在基本机器学习问题中的有用性来激发对数学概念的需求。为了使书简短,许多细节和更先进的概念都被省略了。书中介绍了一些基本概念,以及这些概念如何适用于机器学习的大背景,读者可以找到大量的资源进行进一步研究。对于有数学背景的读者,这本书提供了一个简短但精确的机器学习入门介绍。书中只提供四个代表性的经典的机器学习算法示例。作者关注的是模型本身背后的数学概念,目的是阐明它们的抽象美。作者希望所有的读者都能对机器学习的基本问题有更深入的了解,并将机器学习的实际问题与数学模型的基本选择联系起来。

【谁是目标受众】

随着机器学习在社会中的广泛应用,作者相信每个人都应该对它的基本原理有一些了解。这本书是用学术数学的风格来写的,这使读者能够精确地了解机器学习背后的概念。作者鼓励不熟悉这种简洁的风格的读者坚持阅读下去,并牢记每个主题的目标。作者在整篇文章中都有标记和评论,希望这些评论能对读者提供一些有用的指导。此外,本书假定读者具备高中数学和物理中常用的数学知识。例如,导数和积分,以及二维或三维的几何向量。因此,本书的目标受众包括普通大学生、夜校生和机器学习在线课程的学习者等等。

简介(Introduction)

本书分为两部分,第一部分是数学基础的讲解,第二部分是将第一部分的数学概念应用于基本的机器学习问题中,从而形成“机器学习四大支柱”,如下图所示:

这本书的第一部分描述了关于机器学习系统的三个主要组成部分的数学概念和数学基础:数据、模型和学习。在本书中,作者假设数据已经被适当地转换成适合于阅读的数字表示形式,并被转换成计算机程序。在这本书中,作者认为数据是向量。模型是现实世界的简化版本,它捕获与任务相关的现实世界的各个方面。模型的用户需要理解模型没有捕捉到什么,从而理解模型的局限性。概括起来就是,作者使用领域知识将数据表示为向量。并选择一个合适的模型,要么使用概率方法,要么使用优化方法。采用数值优化的方法,对过去的数据进行学习,目的是它在看不见的数据上表现良好。

本书第二部分介绍了上图所示的机器学习四大支柱,如下表所示。表中的每一行区分了相关变量是连续的还是非连续的类别的问题。 作者解释了如何将本书第一部分介绍的数学概念应用于机器学习算法的设计中。在第8章中,作者以数学的方式重述了机器学习的三个组成部分(数据、模型和学习)。此外,作者还提供了一些建立实验设置的指南,以防止对机器学习系统过于乐观的评估。

此外,作者在第一部分提供了一些练习,这些练习大部分可以用笔和纸来完成。在第二部分中,作者提供了一些编程教程(jupyter记事本)来探索在本书中讨论的机器学习算法的一些特性。

请关注专知公众号(扫一扫最下面专知二维码,或者点击上方蓝色专知)

  • 后台回复“MML2018” 就可以获取全书381页 PDF下载链接~

全书配套网站:https://mml-book.com

全文目录如下:

原文发布于微信公众号 - 专知(Quan_Zhuanzhi)

原文发表时间:2018-10-09

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技评论

技术大牛带你走向机器学习“正道”:小朋友才迷信算法,大人们更重视工程实践

AI科技评论按:“算法”这两字在人工智能圈已然成为“高大上”的代名词,由于不少在校生和职场新人对它过度迷恋,多名 AI 资深人士均对这一现象表示担忧。李开复曾这...

39230
来自专栏AI科技大本营的专栏

重磅|Facebook放大招,训练时间1周降至1天,AI工程师高呼终于等到这一天

作者 | 鸽子 随着深度学习在各行各业的应用日趋成熟,应用范围越来越多元,AI工程师也开始头疼起来: 数据量越来越多,需要应对的场景越来越细分,模型的训练求越...

361100
来自专栏CVer

381页机器学习数学基础PDF下载

【导读】近期,由Marc Peter Deisenroth,A Aldo Faisal和Cheng Soon Ong撰写的《机器学习数学基础》“Mathemat...

29230
来自专栏机器之心

业界 | 自动捕捉高光时刻:谷歌展示Google Clips全新智能摄影技术

19830
来自专栏大数据文摘

职场 | 如何让你的数据直觉更敏锐

对于有大局意识的人来说,这无疑是一个很好的创业机会和职业选择。要想抓住职业机会,你需要超强的“码力”和深入的专业知识。

9100
来自专栏AI科技大本营的专栏

【人工智能工程师】掌握这10个项目,秒杀90%面试者!

2017年人工智能给了我们太多的惊喜和变化,从今年开始,国际巨头们纷纷开始大踏步地战略转向——从移动优先转向AI优先:3月份的微软、4月份的Facebook、5...

35150
来自专栏机器之心

从背景介绍到未来挑战,一文综述移动和无线网络深度学习研究

选自arXiv 作者:Chaoyun Zhang等 机器之心编译 近来移动通信和 5G 网络等快速发展,它们的调控与配置因为充满了多样性和动态变化而面临非常多的...

35850
来自专栏猿人谷

如何招聘程序猿?

同步分布:http://www.yuanrengu.com/index.php/20170314.html

222110
来自专栏机器之心

前沿 | 上交大&南科大最新PRL论文:成功用机器学习实现量子态分类器

据介绍,目前学术界对量子机器学习这一交叉领域包括两方面研究:一方面是利用量子力学的相干叠加或者纠缠等特性,构建能有实现加速的量子机器学习算法,如量子版本的 PC...

14200
来自专栏专知

35页自然语言处理深度学习综述,带你纵览NLP知识全貌

【导读】随着深度学习技术的蓬勃发展,自然语言处理领域也是日新月异,本文为大家带来了最新的基于深度学习的自然语言处理综述,希望能够帮助大家了解NLP领域中的最新进...

72020

扫码关注云+社区

领取腾讯云代金券