深度解析大快DKM大数据运维管理平台功能

深度解析大快DKM大数据运维管理平台功能

之前几周的时间一直是在围绕DKhadoop的运行环境搭建写分享,有一些朋友留言索要了dkhadoop安装包,不知道有没有去下载安装一探究竟。关于DKHadoop下载安装基本已经讲清楚了,这几天有点空闲把大快DKM大数据运维管理平台的内容整理了一些,作为DKHadoop相配套的管理平台,是有必要对DKM有所了解的。

DKM 是DKHadoop管理平台。作为大数据平台端到端Apache Hadoop 的管理应用,DKM 对 DKH 的每个部件都提供了细粒度的可视化和控制。通过DKM ,运维人员是可以提高集群的性能,提升服务质量,提高合规性并降低管理成本。

DKM 设计的目的是为了使得对于企业数据中心的管理变得简单和直观。通过DKM ,可以方便地部署,并且集中式的操作完整的大数据软件栈。该应用软件会自动化安装过程,从而减少了部署集群的时间。通过DKM 可以提供一个集群范围内的节点实时运行状态视图。同时,还提供了一个中央控制台,可以用于配置集群。总结DKM 能够提供的功能主要有以下几点:

1.自动化Hadoop 安装过程,大幅缩短部署时间;

2.提供实时的集群概况,例如节点,服务的运行状况;

3.提供了集中的中央控制台对集群的配置进行更改;

4.包含全面的报告和诊断工具,帮助优化性能和利用率;

基本功能:DKM的基本功能主要可以分为四大模块:管理功能,监控功能,诊断功能和集成功能。本篇我们就先来看以下管理功能:

1、批量部署

我们都知道Hadoop 本身是一个分布式的系统,因此在安装时,需要对每一个节点进行组件的安装,并且由于是开源软件,其安装过程相对比较复杂,Hadoop 每个组件都需要做很多的配置工作,这一点相信各位深有体会。DKH 提供了DKM 来自动化安装部署Hadoop 。 大大缩短了Hadoop 的安装时间,同时也简化了安装Hadoop 的过程。(DKHADOOP安装步骤请参考此前分享的文章)

自动化安装的过程如下:

1.安装环境准备,下载DKM 以及DKH 的安装文件,安装JDK,yum 等基本软件。

2.挑选一台节点,安装DKM ,用户只需要启动安装脚本即可,通常情况下几分钟就能够完成。

3.DKM 是一个web 应用,提供了基于浏览器的界面,用户可以通过浏览器可视化的进行DKH的安装部署。

4.通过DKM 界面,添加其他需要的安装的节点,选择要安装的Hadoop 组件,以及每个节点承担的角色,选择安装,DKM 会自动地将需要安装的软件分发到对应的节点,并完成安装。

5.当所有节点的软件都安装完成之后,DKM 会启动所有的服务。从上述的安装过程可以看出DKH 的安装主要体现两个特点,批量化以及自动化。只需要在其中一个节点完成,其他节点都可以进行批量化的自动安装。

2、集群配置

(1)可视化参数配置界面

Hadoop 包含许多的组件,不同的组件都包含各种各样的配置, 并且分布于不同的主机之上。 DKM 针对这种情况提供了界面化的参数配置功能,并且能够自动的部署到每个节点。

(2)高可靠配置

DKM 对关键的组件使用HA部署方案,避免单点失效的发生,同时DKH 对于组件的异常错误提供了自动恢复处理,最大限度的保证服务的可靠性。

(3)HDFS 高可靠

在标准配置中,NameNode 是HDFS群集中的单点故障(SPOF)。每个群集都具有一个NameNode ,如果机器或进程变为不可用,群集整体将变为不可用,直到NameNode 在新主机上重新启动或上线。Secondary NameNode 不提供故障转移功能。 为了让“备用” NameNode 的状态与“活动”NameNode 在此实施中保持同步,两个节点均与一组名为JournalNode 的独立后台程序进行通信。由“活动”NameNode 执行任何Namespace 修改时,它会持续记录其中大部分JournalNode 的修改记录。 “备用”NameNode 能够从JournalNode 读取编辑操作,并不断监视它们以了解编辑日志发生的更改。当备用节点发现编辑操作时,它会将这些编辑应用于自己的Namespace 。在发生故障转移时,备用节点将确保首先从JournalNode 读取所有的编辑操作,然后才会将自己升级为“活动状态”。这确保了再发生故障转移之前完全同步Namespace 状态。

为了提供快速故障转移,备用NameNode 还需要拥有有关群集中的块位置的最新信息。为实现这一目的,DataNode 配置了这两个NameNode的位置,它们会将这块位置信息和检测信号发送给这两个NameNode。

一次只能有其中一个NameNode 处于活动状态,这一点对于HA群集的正常运行来说至关重要。否则,Namespace 状态会在两者之间快速出现分歧,从而导致数据丢失风险或其他不正确的结果。为了确保此属性并防止所谓的“大脑分裂状况”,JournalNode 一次只允许一个NameNode 成为写入程序。在故障转移过程中,要进入“活动”状态的NameNode 将接管JournalNode的写入角色,这会有效地阻止其它NameNode继续保持“活动”状态,使得新的“活动”NameNode可以安全地继续执行故障转移。

DKH 默认开启了HA . 用户不用担心此问题。

(4)YARN 高可靠

YARN ResourceManager(RM) 负责跟踪群集中的资源并安排应用程序(例如,MapReduce作业)。RM 高可用性(HA)功能以活动/待机 RM 对形式添加冗余,以删除此单点故障。此外,在从待机RM 到活动RM 进行故障转移时,应用程序可以从其上次检查点状态恢复; 例如,在MapReduce 作业中完成的map 任务不在后续的尝试中重新运行。这样可以在不对运行中的应用程序产生任何重要性能影响的情况下,处理以下事件:

计划外事件,如计算机崩溃。

计划内维护事件,如在运行ResourceManager的计算机上进行的软件或硬件升级。

RM HA 要求Zookeeper 和HDFS 服务处于运行状态。RM HA 通过活动-待机RM 对的方式实施。启动时,每个RM 处于待机状态;启动过程,但未加载状态。转换到活动状态时,RM会从指定的状态存储加载内部状态,并启动所有内部服务。 管理员(通过CLI)或通过集成的故障转移控制器(启用自动故障转移时)可促进转换为活动状态。

DKH 默认开启了Resource Manager HA 。用户不需要担心。

3、权限管理

对系统管理员,数据库管理员及其他管理员必须授予不同级别的管理权限。

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏个人分享

大数据全体系年终总结

  1、文件存储当然是选择Hadoop的分布式文件系统HDFS,当然因为硬件的告诉发展,已经出现了内存分布式系统Tachyon,不论是Hadoop的MapRed...

17850
来自专栏CSDN技术头条

Spark Streaming容错的改进和零数据丢失

本文来自Spark Streaming项目带头人Tathagata Das的博客文章,他现在就职于Databricks公司。过去曾在UC Berkeley的AM...

20190
来自专栏Spark学习技巧

kafka入门介绍

21660
来自专栏IT大咖说

你只知大数据的便利,却不知漏洞——hadoop安全完整解析

内容来源:2017 年 07 月 29 日,威客安全技术合伙人安琪在“CDAS 2017 中国数据分析师行业峰会”进行《大数据平台基础架构hadoop安全分析》...

27540
来自专栏美图数据技术团队

大数据集群安全组件解析

大数据集群的基本是数据以及用于计算的资源,企业将相应的数据和资源开放给对应的用户使用,防止被窃取、破坏等,这些都涉及到大数据安全。基于以上关键点,考虑到美图公司...

33800
来自专栏祝威廉

如何基于Yarn开发你的分布式程序

这篇文章不会具体教你如何使用Yarn的API,但是会教你我实践过后的一些经验。接下来的内容会探讨以下两个主题:

10040
来自专栏腾讯大数据的专栏

Hadoop Raid-实战经验总结

分布式文件系统用于解决海量数据存储的问题,腾讯大数据采用HDFS(Hadoop分布式文件系统)作为数据存储的基础设施,并在其上构建如Hive、HBase、Spa...

317100
来自专栏Hadoop实操

CDSW1.2的新功能

1.CDSW现在正式成为Cloudera Manager管理的服务之一,可以直接通过Parcel安装。Cloudera Manager通过CSD(Custom ...

1.9K70
来自专栏大数据

浅析大数据HIVE和HBASE有何区别

Apache Hive是一个构建在Hadoop基础设施之上的数据仓库。通过Hive可以使用HQL语言查询存放在HDFS上的数据。HQL是一种类SQL语言,这种语...

27760
来自专栏包子铺里聊IT

5分钟深入浅出 HDFS

通过前面几篇文章的介绍,我们深入讨论了 Hadoop MapReduce 处理数据的过程,以及优化 MapReduce 性能的方方面面。 期间被反复提及的 HD...

32260

扫码关注云+社区

领取腾讯云代金券