GPU捉襟见肘还想训练大批量模型?谁说不可以

选自Medium

机器之心编译

深度学习模型和数据集的规模增长速度已经让 GPU 算力也开始捉襟见肘,如果你的 GPU 连一个样本都容不下,你要如何训练大批量模型?通过本文介绍的方法,我们可以在训练批量甚至单个训练样本大于 GPU 内存时,在单个或多个 GPU 服务器上训练模型。

2018 年的大部分时间我都在试图训练神经网络时克服 GPU 极限。无论是在含有 1.5 亿个参数的语言模型(如 OpenAI 的大型生成预训练 Transformer 或最近类似的 BERT 模型)还是馈入 3000 万个元素输入的元学习神经网络(如我们在一篇 ICLR 论文《Meta-Learning a Dynamical Language Model》中提到的模型),我都只能在 GPU 上处理很少的训练样本。

但在多数情况下,随机梯度下降算法需要很大批量才能得出不错的结果。

如果你的 GPU 只能处理很少的样本,你要如何训练大批量模型?

有几个工具、技巧可以帮助你解决上述问题。在本文中,我将自己用过、学过的东西整理出来供大家参考。

在这篇文章中,我将主要讨论 PyTorch 框架。有部分工具尚未包括在 PyTorch(1.0 版本)中,因此我也写了自定义代码。

我们将着重探讨以下问题:

  • 在训练批量甚至单个训练样本大于 GPU 内存,要如何在单个或多个 GPU 服务器上训练模型;
  • 如何尽可能高效地利用多 GPU 机器;
  • 在分布式设备上使用多个机器的最简单训练方法。

在一个或多个 GPU 上训练大批量模型

你建的模型不错,在这个简洁的任务中可能成为新的 SOTA,但每次尝试在一个批量处理更多样本时,你都会得到一个 CUDA RuntimeError:内存不足。

这位网友指出了你的问题!

但你很确定将批量加倍可以优化结果。

你要怎么做呢?

这个问题有一个简单的解决方法:梯度累积。

梯度下降优化算法的五个步骤。

与之对等的 PyTorch 代码也可以写成以下五行:

在 loss.backward() 运算期间,为每个参数计算梯度,并将其存储在与每个参数相关联的张量——parameter.grad 中。

累积梯度意味着,在调用 optimizer.step() 实施一步梯度下降之前,我们会对 parameter.grad 张量中的几个反向运算的梯度求和。在 PyTorch 中这一点很容易实现,因为梯度张量在不调用 model.zero_grad() 或 optimizer.zero_grad() 的情况下不会重置。如果损失在训练样本上要取平均,我们还需要除以累积步骤的数量。

以下是使用梯度累积训练模型的要点。在这个例子中,我们可以用一个大于 GPU 最大容量的 accumulation_steps 批量进行训练:

扩展到极致

你可以在 GPU 上训练连一个样本都无法加载的模型吗?

如果你的架构没有太多跳过连接,这就是可能的!解决方案是使用梯度检查点(gradient-checkpointing)来节省计算资源。

基本思路是沿着模型将梯度在小组件中进行反向传播,以额外的前馈传递为代价,节约存储完整的反向传播图的内存。这个方法比较慢,因为我们需要添加额外的计算来减少内存要求,但在某些设置中挺有意思,比如在非常长的序列上训练 RNN 模型(示例参见 https://medium.com/huggingface/from-zero-to-research-an-introduction-to-meta-learning-8e16e677f78a)。

这里不再赘述,读者可以查看以下链接:

  • TensorFlow:https://github.com/openai/gradient-checkpointing
  • PyTorch 文档:https://pytorch.org/docs/stable/checkpoint.html

「节约内存」(Memory-poor)策略需要 O(1) 的内存(但是要求 O(n²) 的计算步)。

充分利用多 GPU 机器

现在我们具体来看如何在多 GPU 上训练模型。

在多 GPU 服务器上训练 PyTorch 模型的首选策略是使用 torch.nn.DataParallel。该容器可以在多个指定设备上分割输入,按照批维度(batch dimension)分割,从而实现模块应用的并行化。

DataParallel 非常容易使用,我们只需添加一行来封装模型:

但是,DataParallel 有一个问题:GPU 使用不均衡。

在一些设置下,GPU-1 会比其他 GPU 使用率高得多。

这个问题从何而来呢?下图很好地解释了 DataParallel 的行为:

使用 torch.nn.DataParallel 的前向和后向传播。

在前向传播的第四步(右上),所有并行计算的结果都聚集在 GPU-1 上。这对很多分类问题来说是件好事,但如果你在大批量上训练语言模型时,这就会成为问题。

我们可以快速计算语言模型输出的大小:

语言模型输出中的元素数量。

假设我们的数据集有 4 万词汇,每一条序列有 250 个 token、每个 batch 中有 32 条序列,那么序列中的每一个元素需要 4 个字节的内存空间,模型的输出大概为 1.2GB。要储存相关的梯度张量,我们就需要把这个内存翻倍,因此我们的模型输出需要 2.4GB 的内存。

这是典型 10GB GPU 内存的主要部分,意味着相对于其它 GPU,GPU - 1 会被过度使用,从而限制了并行化的效果。

如果不调整模型和/或优化方案,我们就无法轻易减少输出中的元素数量。但我们可以确保内存负载在 GPU 中更均匀地分布。

多 GPU 机器上的均衡负载

解决办法是把每部分输出保留在其 GPU 上,而不是将它们聚集到 GPU-1 上。我们也需要分配损失标准计算,计算损失并进行反向传播。

幸而,张航开源了一个名为 PyTorch-Encoding 的 PyTorch 包,它包含了这些定制的并行化功能。

我提取并稍稍改动了这个模块,你可以从以下地址下载 gist(parallel.py)来纳入并调用你的代码。它主要包括两个模块:DataParallelModel 和 DataParallelCriterion,它们的用途如下:

下载地址:https://gist.github.com/thomwolf/7e2407fbd5945f07821adae3d9fd1312

DataParallelModel 和 torch.nn.DataParallel 的区别在于,前向传播的输出(predictions)没有聚集在 GPU-1 上,而是作为 n_gpu 张量的元组,每个张量分布在相应的 GPU 上。

DataParallelCriterion 容器封装了损失函数,并把 n_gpu 张量元组和目标标签张量作为输入。它在每个 GPU 上并行计算损失函数,像 DataParallel 分割模型输入一样分割目标标签张量。

下图说明了 DataParallelModel/DataParallelCriterion 的内部情况:

使用 DataParallelModel 和 DataParallelCriterion。

以下是你可能会遇到的两个特定案例的解决办法:

  • 你的模型输出几个张量:你可能想分解它们:output_1, output_2 = zip(*predictions)
  • 有时候你并不想使用并行损失函数:收集 CPU 上的所有张量:gathered_predictions = parallel.gather(predictions)

分布式训练:在多台机器上训练

在更大的批量上训练时,我们要如何控制多个服务器的算力呢?

最简单的选择是使用 PyTorch 的 DistributedDataParallel,它几乎可以说是以上讨论的 DataParallel 的直接替代元件。

但要注意:尽管代码看起来很相似,但在分布式设定中训练模型要改变工作流程,因为你必须在每个节点上启动一个独立的 Python 训练脚本。正如我们将看到的,一旦启动,这些训练脚本可以通过使用 PyTorch 分布式后端一起同步化。

在实践中,这意味着每个训练脚本将拥有:

  • 它自己的优化器,并在每次迭代中执行一个完整的优化步骤,不需要进行参数传播(DataParallel 中的步骤 2);
  • 一个独立的 Python 解释器:这也将避免 GIL-freeze,这是在单个 Python 解释器上驱动多个并行执行线程时会出现的问题。

当多个并行前向调用由单个解释器驱动时,在前向传播中大量使用 Python 循环/调用的模型可能会被 Python 解释器的 GIL 放慢速度。通过这种设置,DistributedDataParallel 甚至在单台机器设置中也能很方便地替代 DataParallel。

现在我们直接讨论代码和用途。

DistributedDataParallel 是建立在 torch.distributed 包之上的,这个包可以为同步分布式运算提供低级原语,并能以不同的性能使用多种后端(tcp、gloo、mpi、nccl)。在这篇文章中,我将选择一种简单的开箱即用的方式来使用它,但你应该阅读文档和 Séb Arnold 写的教程来深入理解这个模块。

  • 文档:https://pytorch.org/docs/stable/distributed.html
  • 教程:https://pytorch.org/tutorials/intermediate/dist_tuto.html

我们将考虑使用具有两个 4 - GPU 服务器(节点)的简单但通用的设置:

主服务器(服务器 1)拥有一个可访问的 IP 地址和一个用于通信的开放端口。

改写 Python 训练脚本以适应分布式训练

首先我们需要改写脚本,从而令其可以在每台机器(节点)上独立运行。我们将实现完全的分布式训练,并在每个节点的每块 GPU 上运行一个独立的进程,因此总共需要 8 个进程。

我们的训练脚本有点长,因为需要为同步化初始化分布式后端,封装模型并准备数据,以在数据的一个子集上来训练每个进程(每个进程都是独立的,因此我们需要自行处理)。以下是更新后的代码:

启动 Python 训练脚本的多个实例

我们就快完成了,只需要在每个服务器上启动训练脚本的一个实例。

为了运行脚本,我们将使用 PyTorch 的 torch.distributed.launch 工具。它将用来设置环境变量,并用正确的 local_rank 参数调用每个脚本。

第一台机器是最主要的,它应该对于所有其它机器都是可访问的,因此拥有一个可访问的 IP 地址(我们的案例中是 192.168.1.1)以及一个开放端口(在我们的案例中是 1234)。在第一台机器上,我们使用 torch.distributed.launch 来运行训练脚本:

在第二台机器上,我们类似地启动脚本:

python -m torch.distributed.launch --nproc_per_node=4 --nnodes=2 --node_rank=1 --master_addr="192.168.1.1" --master_port=1234 OUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3 and all other arguments of our training script)

这两个命令是相同的,除了—node_rank 参数,其在第一台机器上被设为 0,在第二台机器上被设为 1(如果再加一台机器,则设为 2,以此类推…)。

原文发布于微信公众号 - 机器之心(almosthuman2014)

原文发表时间:2018-10-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

手把手教你为iOS系统开发TensorFlow应用(附开源代码)

选自machinethink.net 机器之心编译 参与:赵华龙、邵明、吴攀、李泽南 在你使用深度神经网络做预测之前,你首先要训练神经网络。现在存在许多不同的神...

3089
来自专栏深度学习入门与实践

【深度学习系列】PaddlePaddle可视化之VisualDL

  上篇文章我们讲了如何对模型进行可视化,用的keras手动绘图输出CNN训练的中途结果,本篇文章将讲述如何用PaddlePaddle新开源的VisualDL来...

4089
来自专栏about云

TensorFlow ML cookbook 第一章7、8节 实现激活功能和使用数据源

问题导读: 1、TensorFlow中有哪些激活函数? 2、如何运行激活函数? 3、TensorFlow有哪些数据源? 4、如何获得及使用数据源? 上...

4788
来自专栏贾志刚-OpenCV学堂

使用Tensorflow Object Detection API实现对象检测

Tensorflow Object Detection API自从发布以来,其提供预训练模型也是不断更新发布,功能越来越强大,对常见的物体几乎都可以做到实时准确...

1403
来自专栏机器之心

资源 | 微软发布可变形卷积网络代码:可用于多种复杂视觉任务

选自Github 机器之心编译 编辑:吴攀 上个月,微软代季峰等研究者发布的一篇论文提出了一种可变形卷积网络,该研究「引入了两种新的模块来提高卷积神经网络(CN...

3506
来自专栏玉树芝兰

如何用 Python 和循环神经网络(RNN)做中文文本分类?

本文为你展示,如何使用 fasttext 词嵌入预训练模型和循环神经网络(RNN), 在 Keras 深度学习框架上对中文评论信息进行情感分类。

1544
来自专栏大数据智能实战

基于tensorflow 1.0的图像叙事功能测试(model/im2txt)

作为多模态数据处理的经典,图像自动打标签(图像叙事功能)一直是一项非常前沿的技术,涉及到机器视觉,自然语言处理等模块。 幸运的是,谷歌基于tensorflow将...

5896
来自专栏FreeBuf

用机器学习玩转恶意URL检测

前段时间漏洞之王Struts2日常新爆了一批漏洞,安全厂商们忙着配合甲方公司做资产扫描,漏洞排查,规则大牛迅速的给出”专杀”规则强化自家产品的规则库。这种基于规...

8489
来自专栏Python小屋

Python+sklearn使用朴素贝叶斯算法识别中文垃圾邮件

2、读取全部训练集,删除其中的干扰字符,例如【】*。、,等等,然后分词,删除长度为1的单个字。

2185
来自专栏素质云笔记

图像增强︱window7+opencv3.2+keras/theano简单应用(函数解读)

在服务器上安装opencv遇到跟CUDA8.0不适配的问题,于是不得不看看其他机器是否可以预装并使用。 . 一、python+opencv3.2安装 ope...

40610

扫码关注云+社区