【导读】bharathgs在Github上维护整理了一个PyTorch的资源站,包括论文、代码、教程等,涉及自然语言处理与语音处理、计算机视觉、机器学习、深度学习等库。 是学习Pytorch必选资源;



PyTorch 是什么?

PyTorch是一个用于科学计算和深度学习的Python扩展库。它便于学习、编写和调试,支持灵活的动态计算图和GPU高速运算,具有完善的研发生态和技术社区。PyTorch于2017年由Facebook正式推出后,迅速引起了人工智能研发人员的关注,目前已成为最受重视的机器学习软件库之一。近日,Facebook 在首届 PyTorch 开发者大会发布了 PyTorch1.0 预览版,标志着这一框架更为稳定可用。


一. 自然语言与语音处理NLP & Speech Processing

二. 计算机视觉CV

三. 概率生成库

四. 其他库

五. 教程和例子

六. 论文实现



Pytorch 官网


一. 自然语言与语音处理

  1. pytorch text : Torch text related contents.
  2. pytorch-seq2seq: A framework for sequence-to-sequence (seq2seq) models implemented in PyTorch.
  3. anuvada: Interpretable Models for NLP using PyTorch.
  4. audio: simple audio I/O for pytorch.
  5. loop: A method to generate speech across multiple speakers
  6. fairseq-py: Facebook AI Research Sequence-to-Sequence Toolkit written in Python.
  7. speech: PyTorch ASR Implementation.
  8. OpenNMT-py: Open-Source Neural Machine Translation in PyTorch http://opennmt.net
  9. neuralcoref: State-of-the-art coreference resolution based on neural nets and spaCy huggingface.co/coref
  10. sentiment-discovery: Unsupervised Language Modeling at scale for robust sentiment classification.
  11. MUSE: A library for Multilingual Unsupervised or Supervised word Embeddings
  12. nmtpytorch: Neural Machine Translation Framework in PyTorch.
  13. pytorch-wavenet: An implementation of WaveNet with fast generation
  14. Tacotron-pytorch: Tacotron: Towards End-to-End Speech Synthesis.
  15. AllenNLP: An open-source NLP research library, built on PyTorch.
  16. PyTorch-NLP: Text utilities and datasets for PyTorch pytorchnlp.readthedocs.io
  17. quick-nlp: Pytorch NLP library based on FastAI.
  18. TTS: Deep learning for Text2Speech
  19. LASER: Language-Agnostic SEntence Representations
  20. pyannote-audio: Neural building blocks for speaker diarization: speech activity detection, speaker change detection, speaker embedding
  21. gensen: Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning.
  22. translate: Translate - a PyTorch Language Library.
  23. espnet: End-to-End Speech Processing Toolkit espnet.github.io/espnet
  24. pythia: A software suite for Visual Question Answering
  25. UnsupervisedMT: Phrase-Based & Neural Unsupervised Machine Translation.
  26. jiant: The jiant sentence representation learning toolkit.

二. 计算机视觉

  1. pytorch vision : Datasets, Transforms and Models specific to Computer Vision.
  2. pt-styletransfer: Neural style transfer as a class in PyTorch.
  3. OpenFacePytorch: PyTorch module to use OpenFace's nn4.small2.v1.t7 model
  4. img_classification_pk_pytorch: Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)
  5. SparseConvNet: Submanifold sparse convolutional networks.
  6. Convolution_LSTM_pytorch: A multi-layer convolution LSTM module
  7. face-alignment: ? 2D and 3D Face alignment library build using pytorch adrianbulat.com
  8. pytorch-semantic-segmentation: PyTorch for Semantic Segmentation.
  9. RoIAlign.pytorch: This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on CPU and GPU.
  10. pytorch-cnn-finetune: Fine-tune pretrained Convolutional Neural Networks with PyTorch.
  11. detectorch: Detectorch - detectron for PyTorch
  12. Augmentor: Image augmentation library in Python for machine learning. http://augmentor.readthedocs.io
  13. s2cnn: This library contains a PyTorch implementation of the SO(3) equivariant CNNs for spherical signals (e.g. omnidirectional cameras, signals on the globe) s

三. 概率生成库

  1. ptstat: Probabilistic Programming and Statistical Inference in PyTorch
  2. pyro: Deep universal probabilistic programming with Python and PyTorch http://pyro.ai
  3. probtorch: Probabilistic Torch is library for deep generative models that extends PyTorch.
  4. paysage: Unsupervised learning and generative models in python/pytorch.
  5. pyvarinf: Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch.
  6. pyprob: A PyTorch-based library for probabilistic programming and inference compilation.
  7. mia: A library for running membership inference attacks against ML models.

四. 其他库

  1. pytorch extras : Some extra features for pytorch.
  2. functional zoo : PyTorch, unlike lua torch, has autograd in it's core, so using modular structure of torch.nn modules is not necessary, one can easily allocate needed Variables and write a function that utilizes them, which is sometimes more convenient. This repo contains model definitions in this functional way, with pretrained weights for some models.
  3. torch-sampling : This package provides a set of transforms and data structures for sampling from in-memory or out-of-memory data.
  4. torchcraft-py : Python wrapper for TorchCraft, a bridge between Torch and StarCraft for AI research.
  5. aorun : Aorun intend to be a Keras with PyTorch as backend.
  6. logger : A simple logger for experiments.
  7. PyTorch-docset : PyTorch docset! use with Dash, Zeal, Velocity, or LovelyDocs.
  8. convert_torch_to_pytorch : Convert torch t7 model to pytorch model and source.
  9. pretrained-models.pytorch: The goal of this repo is to help to reproduce research papers results.
  10. pytorch_fft : PyTorch wrapper for FFTs

五. 教程例子

  1. Practical Pytorch : Tutorials explaining different RNN models
  2. DeepLearningForNLPInPytorch : An IPython Notebook tutorial on deep learning, with an emphasis on Natural Language Processing.
  3. pytorch-tutorial : tutorial for researchers to learn deep learning with pytorch.
  4. pytorch-exercises : pytorch-exercises collection.
  5. pytorch tutorials : Various pytorch tutorials.
  6. pytorch examples : A repository showcasing examples of using pytorch
  7. pytorch practice : Some example scripts on pytorch.
  8. pytorch mini tutorials : Minimal tutorials for PyTorch adapted from Alec Radford's Theano tutorials.
  9. pytorch text classification : A simple implementation of CNN based text classification in Pytorch
  10. cats vs dogs : Example of network fine-tuning in pytorch for the kaggle competition Dogs vs. Cats Redux: Kernels Edition. Currently #27 (0.05074) on the leaderboard.

六. 论文实现

  1. google_evolution : This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al.
  2. pyscatwave : Fast Scattering Transform with CuPy/PyTorch,read the paper here
  3. scalingscattering : Scaling The Scattering Transform : Deep Hybrid Networks.
  4. deep-auto-punctuation : a pytorch implementation of auto-punctuation learned character by character.
  5. Realtime_Multi-Person_Pose_Estimation : This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here .
  6. PyTorch-value-iteration-networks : PyTorch implementation of the Value Iteration Networks (NIPS '16) paper
  7. pytorch_Highway : Highway network implemented in pytorch.
  8. pytorch_NEG_loss : NEG loss implemented in pytorch.
  9. pytorch_RVAE : Recurrent Variational Autoencoder that generates sequential data implemented in pytorch.
  10. pytorch_TDNN : Time Delayed NN implemented in pytorch.

七. 其他Pytorch资源

  1. the-incredible-pytorch : The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
  2. generative models : Collection of generative models, e.g. GAN, VAE in Tensorflow, Keras, and Pytorch. http://wiseodd.github.io
  3. pytorch vs tensorflow : an informative thread on reddit.
  4. Pytorch discussion forum
  5. pytorch notebook: docker-stack : A project similar to Jupyter Notebook Scientific Python Stack
  6. drawlikebobross: Draw like Bob Ross using the power of Neural Networks (With PyTorch)!
  7. pytorch-tvmisc: Totally Versatile Miscellanea for Pytorch
  8. pytorch-a3c-mujoco: Implement A3C for Mujoco gym envs.
  9. PyTorch in 5 Minutes.
  10. pytorch_chatbot: A Marvelous ChatBot implemented using PyTorch.



原文发布于微信公众号 - 专知(Quan_Zhuanzhi)





0 条评论
登录 后参与评论




之前发过一篇讨论文章——异常值怎么整。 在原文评论区里(戳此→异常值怎么整?| 讨论)得到了各位大大的指教,数说君也受益匪浅,现在整理一下供大家参考: 聚类 ...





机器之心「GMIS 2017」嘉宾揭秘:LSTM之父Jürgen Schmidhuber

2017 全球机器智能峰会(GMIS 2017),让我们近距离接触「LSTM 之父」Jürgen Schmidhuber。 2017 全球机器智能峰会(GMIS...



选自Learndatasci 机器之心编译 参与:李泽南 来自 Glassdoor 的最新数据可以告诉我们各大科技公司最近在招聘面试时最喜欢向候选人提什么问题。...


博客 | EMNLP2018上FB、谷歌继续并肩「刷榜」,瓜分最佳长论文和十分之一接受论文

雷锋网 AI 科技评论按,自然语言处理顶会 EMNLP 2018 已经于 10 月 31 日开始了 Tutorial,正会将从 11 月 2 日开始。2017 ...



决策树 (又称判定树,Decision Tree)是硕、博士生数据挖掘课程要点和难点,教学实践表明,这一章需要数学基础知识多,难得有趣。明知是难点,偏向难...



1.某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题? A. 关联规则发现 B. 聚类 C. 分类 D. 自然语言处理 ...


实战 | 用 Python 选股票,据说可以多挣个20%

本文将使用Python来可视化股票数据,比如绘制K线图,并且探究各项指标的含义和关系,最后使用移动平均线方法初探投资策略。 数据导入 这里将股票数据存储在sto...



【新智元导读】很多人都想知道,谷歌、微软、Facebook 这样的顶级科技公司,在面试大数据机器学习工程师时会问些什么问题。可惜的是,这些公司的面试者事先都要签...


理解计算-从根号2到AlphaGo 第4季 凛冬将至

在新中国诞生的那一年,加拿大生理学家唐纳德﹒赫布(Donald O. Hebb)出版了《行为的组织》 (《The Organization of Behavio...