LaTeX IEEE模板

因为课程作业的要求需要完成一篇IEEE格式的论文,所以选择入门LaTeX。但是期间遇到了各种各样莫名其妙的坑。前前后后挣扎了两个多星期终于完成了IEEE模板的设置。下面详细记录一下让我深恶痛绝的心路历程。

一、软件的选择

网上有很多LaTeX软件,在线编辑器推荐Overleaf。但是我个人还是更喜欢离线写东西,所以尝试过各种编辑器,例如VSCode等等,这些编辑器都需要自己搭环境才能用,反正对于我们这种初学者而言门槛较高,而且浪费时间,所以下面介绍一个LaTeX组合可以让你直接上手体验LaTeX,而不需要挣扎在LaTeX的门口。

要想离线使用LaTeX,首先需要一个编辑器,也就是敲LaTeX的软件,这里强烈推荐 TextStudio这个软件是开源免费的,而且界面是我找过的软件中还过得去的。。因为感觉其他的也都不怎么好看。

但是光有编辑器还不行啊,你还得有编译器,这里推荐使用 MiKTeX怎么理解这个软件的作用呢,就好像你要运行python代码,你得安装官网提供的Python3.6或者Anaconda之后才能编译python代码啊,之前没搞懂这个关系,一直以为跟markdown一样,结果并不是。

所以综上,要想使用LaTeX,你得有编辑器和编译器才行啊。

二、模板

废话不多说直接上模板。模板最初只需要如下三个文件:

  • temp.tex: 保存LaTeX的文件
  • temp.bib: 保存参考文献的文件,其实也可以将参考文献写在*.tex中,但是我个人更喜欢把他们分开,因为这样逻辑更清晰。
  • ieeeconf.cls: IEEE样式模板。

以上文件可在如下网址下载:

最终效果:

下面是示例。

1. temp.tex

\documentclass[a4paper, 10pt, conference]{ieeeconf}   
\usepackage[utf8]{inputenc}
\usepackage{dtk-logos} % for BibTeX stylized logo 
\overrideIEEEmargins


\title{\LARGE \bf
The review of Automated Machine learning
}

\author{He Xin$^{1}$ and Wang Zhichun$^{2}$
}

\begin{document}

\maketitle
%\thispagestyle{empty}
%\pagestyle{empty}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{abstract}

Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test


\end{abstract}

\section{INTRODUCTION}

As we all know(\cite{xie_genetic_2017}), deep learning, which has been used in a lot of research fields including image classification, image recognition, machine translation, has achieved remarkable achievements in those tasks. Take the image classification as an example, AlexNet () outperformed traditional computer vision methods on ImageNet (Russakovsky et al., 2015), which was in turn outperformed by VGG nets (Simonyan \& Zisserman, 2015), then ResNets (He et al., 2016) etc.


\section{METHODS}

As we all know(\cite{xie_genetic_2017}), deep learning, which has been used in a lot of research fields including image classification, image recognition, machine translation, has achieved remarkable achievements in those tasks. Take the image classification as an example, AlexNet () outperformed traditional computer vision methods on ImageNet (Russakovsky et al., 2015), which was in turn outperformed by VGG nets (Simonyan \& Zisserman, 2015), then ResNets (He et al., 2016) etc.


\subsection{Bayesian Optimization}

Test test testTest test testTest test testTest test test
As we all know(\cite{xie_genetic_2017}), deep learning, which has been used in a lot of research fields including image classification, image recognition, machine translation, has achieved remarkable achievements in those tasks. Take the image classification as an example, AlexNet () outperformed traditional computer vision methods on ImageNet (Russakovsky et al., 2015), which was in turn outperformed by VGG nets (Simonyan \& Zisserman, 2015), then ResNets (He et al., 2016) etc.



\subsection{Gradient-based}

Test test testTest test testTest test testTest test test
As we all know(\cite{xie_genetic_2017}), deep learning, which has been used in a lot of research fields including image classification, image recognition, machine translation, has achieved remarkable achievements in those tasks. Take the image classification as an example, AlexNet () outperformed traditional computer vision methods on ImageNet (Russakovsky et al., 2015), which was in turn outperformed by VGG nets (Simonyan \& Zisserman, 2015), then ResNets (He et al., 2016) etc.




\subsection{Meta Learning}

Test test testTest test testTest test testTest test test

As we all know(\cite{xie_genetic_2017}), deep learning, which has been used in a lot of research fields including image classification, image recognition, machine translation, has achieved remarkable achievements in those tasks. Take the image classification as an example, AlexNet () outperformed traditional computer vision methods on ImageNet (Russakovsky et al., 2015), which was in turn outperformed by VGG nets (Simonyan \& Zisserman, 2015), then ResNets (He et al., 2016) etc.





\subsection{Evolutionary Algorithm}
Test test testTest test testTest test testTest test test


As we all know(\cite{xie_genetic_2017}), deep learning, which has been used in a lot of research fields including image classification, image recognition, machine translation, has achieved remarkable achievements in those tasks. Take the image classification as an example, AlexNet () outperformed traditional computer vision methods on ImageNet (Russakovsky et al., 2015), which was in turn outperformed by VGG nets (Simonyan \& Zisserman, 2015), then ResNets (He et al., 2016) etc.




\subsection{Reinforcement Learning}


Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test



\section{Comparison and Analysis}

Test test testTest test testTest test testTest test test
Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test

\subsection{Units}


Test test testTest test testTest test testTest test test
Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test


\begin{itemize}

\item Test test test
\item Test test test

\end{itemize}



\section{CONCLUSIONS}


Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test

\addtolength{\textheight}{-12cm}   % This command serves to balance the column lengths
                                  % on the last page of the document manually. It shortens
                                  % the textheight of the last page by a suitable amount.
                                  % This command does not take effect until the next page
                                  % so it should come on the page before the last. Make
                                  % sure that you do not shorten the textheight too much.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{APPENDIX}

Test test
Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test

\section*{ACKNOWLEDGMENT}

Test test testTest test testTest test testTest test test

Test test testTest test testTest test testTest test test
Test test

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


\nocite{*}
\bibliographystyle{ieeetran}
\bibliography{temp}


\end{document}

2. temp.bib

@article{xie_genetic_2017,
    title = {Genetic {CNN}},
    url = {http://arxiv.org/abs/1703.01513},
    abstract = {The deep Convolutional Neural Network (CNN) is the state-of-the-art solution for large-scale visual recognition. Following basic principles such as increasing the depth and constructing highway connections, researchers have manually designed a lot of fixed network structures and verified their effectiveness.},
    language = {en},
    urldate = {2018-10-22},
    journal = {arXiv:1703.01513 [cs]},
    author = {Xie, Lingxi and Yuille, Alan},
    month = mar,
    year = {2017},
    note = {arXiv: 1703.01513},
    keywords = {Computer Science - Computer Vision and Pattern Recognition},
    file = {Xie 和 Yuille - 2017 - Genetic CNN.pdf:E\:\\Zotero_storage\\storage\\A73TXSBC\\Xie 和 Yuille - 2017 - Genetic CNN.pdf:application/pdf}
}

3. ieeeconf.cls

这个文件太大,建议去上面的链接中下载。


本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

【重磅】深度学习顶会 ICLR 2018 匿名提交论文列表(附pdf下载链接)

【导读】ICLR,全称为「International Conference on Learning Representations」(国际学习表征会议),201...

62810
来自专栏算法修养

文本分类学习 (十)构造机器学习Libsvm 的C# wrapper(调用c/c++动态链接库)

前言: 对于SVM的了解,看前辈写的博客加上读论文对于SVM的皮毛知识总算有点了解,比如线性分类器,和求凸二次规划中用到的高等数学知识。然而SVM最核心的地方应...

852
来自专栏落影的专栏

GPUImage详细解析(二)

解析 GPUImage详细解析(一) 上一篇介绍的是GPUImageFramebuffer和GPUImageFilter。 简单回顾一下: GPUImag...

2903
来自专栏MixLab科技+设计实验室

设计师编程指南之Sketch插件开发 6

往期文章索引: 1 / 入门基本概念、page的相关操作 2 / artboard 、NSFileManager 和 NSString 关于文件及文件夹的相关操...

3025
来自专栏数据结构与算法

网络最大流算法—EK算法

前言 EK算法是求网络最大流的最基础的算法,也是比较好理解的一种算法,利用它可以解决绝大多数最大流问题。 但是受到时间复杂度的限制,这种算法常常有TLE的风险 ...

4288
来自专栏何俊林

流媒体解码及H.264编码推流

6855
来自专栏Python攻城狮

Python数据科学(六)- 资料清理(Ⅰ)1.Pandas1.资料筛选2.侦测遗失值3.补齐遗失值

成功爬取到我们所需要的数据以后,接下来应该做的是对资料进行清理和转换, 很多人遇到这种情况最自然地反应就是“写个脚本”,当然这也算是一个很好的解决方法,但是,p...

1213
来自专栏新智元

深度学习挑战冯·诺依曼结构

【新智元导读】想挑战冯·诺依曼,就必须从三个要素入手:基本操作,例如加减乘除;逻辑流程控制,例如if-else-then,for,while;设存储器,内存和硬...

38711
来自专栏人工智能LeadAI

机器学习实战 | 第一章:sklearn常用工具介绍

写在前面: 花了大力气学了很多的理论,也用Python实现了其中大部分的算法.接下来开始就进入实战阶段了. 实战阶段有三个重点: 1.选择合适的机器学习框...

28810
来自专栏CreateAMind

神经网络图灵机(Neural Turing Machines, NTM)论文完整翻译

1354

扫码关注云+社区