前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Spark应用HanLP对中文语料进行文本挖掘--聚类详解教程

Spark应用HanLP对中文语料进行文本挖掘--聚类详解教程

原创
作者头像
IT小白龙
修改2018-11-12 10:47:34
9030
修改2018-11-12 10:47:34
举报
文章被收录于专栏:hadoop学习笔记hadoop学习笔记

软件:IDEA2014、Maven、HanLP、JDK;

用到的知识:HanLP、Spark TF-IDF、Spark kmeans、Spark mapPartition;

用到的数据集:http://www.threedweb.cn/thread-1288-1-1.html(不需要下载,已经包含在工程里面);

工程下载:https://github.com/fansy1990/hanlp-test 。

1、问题描述

现在有一个中文文本数据集,这个数据集已经对其中的文本做了分类,如下:

其中每个文件夹中含有个数不等的文件,比如环境有200个,艺术有248个;同时,每个文件的内容基本上就是一些新闻报道或者中文描述,如下:

现在需要做的就是,把这些文档进行聚类,看其和原始给定的类别的重合度有多少,这样也可以反过来验证我们聚类算法的正确度。

2.、解决思路:

2.1 文本预处理:

1. 由于文件的编码是GBK的,读取到Spark中全部是乱码,所以先使用Java把代码转为UTF8编码;  

2. 由于文本存在多个文件中(大概2k多),使用Spark的wholeTextFile读取速度太慢,所以考虑把这些文件全部合并为一个文件,这时又结合1.的转变编码,所以在转变编码的时候就直接把所有的数据存入同一个文件中;

其存储的格式为: 每行: 文件名.txt\t文件内容

如:  41.txt 【 日 期 】199601....

这样子的话,就可以通过.txt\t 来对每行文本进行分割,得到其文件名以及文件内容,这里每行其实就是一个文件了。

2.2 分词

分词直接采用HanLP的分词来做,HanLP这里选择两种:Standard和NLP(还有一种就是HighSpeed,但是这个木有用户自定义词典,所以前期考虑先用两种),具体参考:https://github.com/hankcs/HanLP ;

2.3 词转换为词向量

在Kmeans算法中,一个样本需要使用数值类型,所以需要把文本转为数值向量形式,这里在Spark中有两种方式。其一,是使用TF-IDF;其二,使用Word2Vec。这里暂时使用了TF-IDF算法来进行,这个算法需要提供一个numFeatures,这个值越大其效果也越好,但是相应的计算时间也越长,后面也可以通过实验验证。

2.4 使用每个文档的词向量进行聚类建模

在进行聚类建模的时候,需要提供一个初始的聚类个数,这里面设置为10,因为我们的数据是有10个分组的。但是在实际的情况下,一般这个值是需要通过实验来验证得到的。

2.5 对聚类后的结果进行评估

这里面采用的思路是:

1. 得到聚类模型后,对原始数据进行分类,得到原始文件名和预测的分类id的二元组(fileName,predictId);

2. 针对(fileName,predictId),得到(fileNameFirstChar ,fileNameFirstChar.toInt - predictId)的值,这里需要注意的是fileNameFirstChar其实就是代表这个文件的原始所属类别了。

3. 这里有一个一般假设,就是使用kmeans模型预测得到的结果大多数是正确的,所以fileNameFirstChar.toInt-predictId得到的众数其实就是分类的正确的个数了(这里可能比较难以理解,后面会有个小李子来说明这个问题);

4. 得到每个实际类别的预测的正确率后就可以去平均预测率了。

5. 改变numFeatuers的值,看下是否numFeatures设置的比较大,其正确率也会比较大?

3、具体步骤:

3.1 开发环境--Maven

首先第一步,当然是开发环境了,因为用到了Spark和HanLP,所以需要在pom.xml中加入这两个依赖:

1. <!-- 中文分词框架 -->

2.<dependency>

3.<groupId>com.hankcs</groupId>

4.<artifactId>hanlp</artifactId>

5.<version>${hanlp.version}</version>

6.</dependency>

7.<!-- Spark dependencies -->

8.<dependency>

9.<groupId>org.apache.spark</groupId>

10.<artifactId>spark-core_2.10</artifactId>

11.<version>${spark.version}</version>

12.</dependency>

13.<dependency>

14.<groupId>org.apache.spark</groupId>

15.<artifactId>spark-mllib_2.10</artifactId>

16.<version>${spark.version}</version>

17.</dependency>

其版本为:

<hanlp.version>portable-1.3.4</hanlp.version>、 <spark.version>1.6.0-cdh5.7.3</spark.version>。

3.2 文件转为UTF-8编码及存储到一个文件

这部分内容可以直接参考:src/main/java/demo02_transform_encoding.TransformEncodingToOne 这里的实现,因为是Java基本的操作,这里就不加以分析了。

3.3 Scala调用HanLP进行中文分词

Scala调用HanLP进行分词和Java的是一样的,同时,因为这里有些词语格式不正常,所以把这些特殊的词语添加到自定义词典中,其示例如下:

1.import com.hankcs.hanlp.dictionary.CustomDictionary

2.import com.hankcs.hanlp.dictionary.stopword.CoreStopWordDictionary

3.import com.hankcs.hanlp.tokenizer.StandardTokenizer

4.import scala.collection.JavaConversions._

5./**

6.* Scala 分词测试

7.* Created by fansy on 2017/8/25.

 8.*/

9.object SegmentDemo {

10.def main(args: Array[String]) {

11.val sentense = "41,【 日 期 】19960104 【 版 号 】1 【 标 题 】合巢芜高速公路巢芜段竣工 【 作 者 】彭建中 【 正 文 】 安徽合(肥)巢(湖)芜(湖)高速公路巢芜段日前竣工通车并投入营运。合巢芜 高速公路是国家规划的京福综合运输网的重要干线路段,是交通部确定1995年建成 的全国10条重点公路之一。该条高速公路正线长88公里。(彭建中)"

12.CustomDictionary.add("日 期")

13.CustomDictionary.add("版 号")

14.CustomDictionary.add("标 题")

15.CustomDictionary.add("作 者")

16.CustomDictionary.add("正 文")

17.val list = StandardTokenizer.segment(sentense)

18.CoreStopWordDictionary.apply(list)

19.println(list.map(x => x.word.replaceAll(" ","")).mkString(","))

20.}

21.}

运行完成后,即可得到分词的结果,如下:

考虑到使用方便,这里把分词封装成一个函数:

1./**

2.* String 分词

3.* @param sentense

4.* @return

5.*/

6.def transform(sentense:String):List[String] ={

7.val list = StandardTokenizer.segment(sentense)

8.CoreStopWordDictionary.apply(list)

9.list.map(x => x.word.replaceAll(" ","")).toList

10.}

11.}

输入即是一个中文的文本,输出就是分词的结果,同时去掉了一些常用的停用词。

3.4 求TF-IDF

在Spark里面求TF-IDF,可以直接调用Spark内置的算法模块即可,同时在Spark的该算法模块中还对求得的结果进行了维度变换(可以理解为特征选择或“降维”,当然这里的降维可能是提升维度)。代码如下:

1.val docs = sc.textFile(input_data).map{x => val t = x.split(".txt\t");(t(0),transform(t(1)))}

2..toDF("fileName", "sentence_words")

3.

4.// 3. 求TF

5.println("calculating TF ...")

6.val hashingTF = new HashingTF()

7..setInputCol("sentence_words").setOutputCol("rawFeatures").setNumFeatures(numFeatures)

8.val featurizedData = hashingTF.transform(docs)

9.

10.// 4. 求IDF

11.println("calculating IDF ...")

12.val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")

13.val idfModel = idf.fit(featurizedData)

14.val rescaledData = idfModel.transform(featurizedData).cache()

变量docs是一个DataFrame[fileName, sentence_words] ,经过HashingTF后,变成了变量 featurizedData ,同样是一个DataFrame[fileName,sentence_words, rawFeatures]。这里通过setInputCol以及SetOutputCol可以设置输入以及输出列名(列名是针对DataFrame来说的,不知道的可以看下DataFrame的API)。

接着,经过IDF模型,得到变量 rescaledData ,其DataFrame[fileName,sentence_words, rawFeatures, features] 。

执行结果为:

3.5 建立KMeans模型

直接参考官网给定例子即可:

1.println("creating kmeans model ...")

2.val kmeans = new KMeans().setK(k).setSeed(1L)

3.val model = kmeans.fit(rescaledData)

4.// Evaluate clustering by computing Within Set Sum of Squared Errors.

5.println("calculating wssse ...")

6.val WSSSE = model.computeCost(rescaledData)

7.println(s"Within Set Sum of Squared Errors = $WSSSE")

这里有计算cost值的,但是这个值评估不是很准确,比如我numFeature设置为2000的话,那么这个值就很大,但是其实其正确率会比较大的。

3.6 模型评估

这里的模型评估直接使用一个小李子来说明:比如,现在有这样的数据:

其中,1开头,2开头和4开头的属于同一类文档,后面的0,3,2,1等,代表这个文档被模型分类的结果,那么可以很容易的看出针对1开头的文档,

其分类正确的有4个,其中("123.txt",3)以及(“126.txt”,1)是分类错误的结果,这是因为,在这个类别中预测的结果中0是最多的,所以0是和1开头的文档对应起来的,这也就是前面的假设。

1. 把同一类文档分到同一个partition中;

1.val data = sc.parallelize(t)

2.val file_index = data.map(_._1.charAt(0)).distinct.zipWithIndex().collect().toMap

3.println(file_index)

4.val partitionData = data.partitionBy(MyPartitioner(file_index))

这里的file_index,是对不同类的文档进行编号,这个编号就对应每个partition,看MyPartitioner的实现:

1.case class MyPartitioner(file_index:Map[Char,Long]) extends Partitioner

2.override def getPartition(key: Any): Int = key match {

3.case _ => file_index.getOrElse(key.toString.charAt(0),0L).toInt

4.}

5..override def numPartitions: Int = file_index.size

6.}

2. 针对每个partition进行整合操作:

在整合每个partition之前,我们先看下我们自定义的MyPartitioner是否在正常工作,可以打印下结果:

1.val tt = partitionData.mapPartitionsWithIndex((index: Int, it: Iterator[(String,Int)]) => it.toList.map(x => (index,x)).toIterator)

2.tt.collect().foreach(println(_))

运行如下:

其中第一列代表每个partition的id,第二列是数据,发现其数据确实是按照预期进行处理的;接着可以针对每个partition进行数据整合:

1.// firstCharInFileName , firstCharInFileName - predictType

2.val combined = partitionData.map(x =>( (x._1.charAt(0), Integer.parseInt(x._1.charAt(0)+"") - x._2),1) )

3..mapPartitions{f => var aMap = Map[(Char,Int),Int]();

4.for(t <- f){

5.if (aMap.contains(t._1)){

6.aMap = aMap.updated(t._1,aMap.getOrElse(t._1,0)+1)

7.}else{

8.aMap = aMap + t

9.}

10.}

11.val aList = aMap.toList

12.val total= aList.map(_._2).sum

13.val total_right = aList.map(_._2).max

14.List((aList.head._1._1,total,total_right)).toIterator

15.// aMap.toIterator //打印各个partition的总结

16. }

在整合之前先执行一个map操作,把数据变成((fileNameFirstChar, fileNameFirstChar.toInt - predictId), 1),其中fileNameFirstChar代表文件的第一个字符,其实也就是文件的所属实际类别,后面的fileNameFirstChar.toInt-predictId 其实就是判断预测的结果是否对了,这个值的众数就是预测对的;最后一个值代码前面的这个键值对出现的次数,其实就是统计属于某个类别的实际文件个数以及预测对的文件个数,分别对应上面的total和total_right变量;输出结果为:

(4,6,3)

(1,6,4)

(2,6,4)

发现其打印的结果是正确的,第一列代表文件名开头,第二个代表属于这个文件的个数,第三列代表预测正确的个数

这里需要注意的是,这里因为文本的实际类别和文件名是一致的,所以才可以这样处理,如果实际数据的话,那么mapPartitions函数需要更改。

3. 针对数据结果进行统计:

最后只需要进行简单的计算即可:

1.for(re <- result ){

2.println("文档"+re._1+"开头的 文档总数:"+ re._2+",分类正确的有:"+re._3+",分类正确率是:"+(re._3*100.0/re._2)+"%")

3.}

4.val averageRate = result.map(_._3).sum *100.0 / result.map(_._2).sum

5.println("平均正确率为:"+averageRate+"%")

输出结果为:

4. 实验

设置不同的numFeature,比如使用200和2000,其对比结果为:

所以设置numFeatures值越大,其准确率也越高,不过计算也比较复杂。

 5. 总结

1. HanLP的使用相对比较简单,这里只使用了分词及停用词,感谢开源;

2. Spark里面的TF-IDF以及Word2Vector使用比较简单,不过使用这个需要先分词;

3. 这里是在IDEA里面运行的,如果使用Spark-submit的提交方式,那么需要把hanpl的jar包加入,这个有待验证

文章来源于fansy1990的博客

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档