专栏首页数据结构与算法LOJ#2552. 「CTSC2018」假面(期望 背包)

LOJ#2552. 「CTSC2018」假面(期望 背包)

题意

题目链接

Sol

多年以后,我终于把这题的暴力打出来了qwq 好感动啊。。

刚开始的时候想的是:

设\(f[i][j]\)表示第\(i\)轮, 第\(j\)个人血量的期望值

转移的时候若要淦这个人,那么\(f[i][j] = (f[i - 1][j] + 1) * p + (f[i - 1][j]) * (1 - p)\)

然后发现自己傻逼了。。因为期望不能正着推。

考虑直接推概率,设\(t[k][i][j]\)表示第\(k\)轮,第\(i\)个人,血量为\(j\)的概率

这玩意儿是可以转移的,就是判一下这次打中了没有

第二问可以对每个点分别算答案,设\(g[i][j]\)表示除必须活着的人外,前\(i\)个人中,有\(j\)个活着的概率,背包转移一下

这样复杂度是\(O(qn + n^3)\)的

显然第二问看起来非常暴力,

标算的做法好像叫“退背包”,也就是从背包中删除一个元素

先不考虑某个元素必须存活,推一遍得到\(g[i][j]\)表示前\(i\)个人中,有\(j\)个存活的概率

考虑转移的式子,设\(ali[i]\)表示第\(i\)个人活着的概率

\(g[i][j] = g[i - 1][j - 1] * ali[i] + g[i - 1][j] * (1 - ali[i])\)

而我们要得到的实际上就是\(g[i-1][j]\)这一项

那么\(g[i - 1][j] = \frac{g[i][j] - g[i - 1][j - 1] * ali[i]}{1 - ali[i]}\)

倒着推一遍即可,注意当\(1 - ali[i] = 0\)的时候需要特判,此时\(g[i - 1][j] = g[i][j + 1]\)

70分

#include<bits/stdc++.h>
//#define int long long 
using namespace std;
const int MAXN = 201, mod = 998244353;
int f[2][MAXN], g[MAXN][MAXN], t[2][MAXN][MAXN];
// f: expect 
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, a[MAXN], Q, em[MAXN];
int fp(int a, int p) {
    int base = 1;
    while(p) {
        if(p & 1) base = 1ll * base * a % mod;
        a = 1ll * a * a % mod; p >>= 1;
    }
    return base;
}
int inv(int a) {
    return fp(a, mod - 2);
}
int add(int x, int y) {
    if(x + y < 0) return x + y + mod;
    else return x + y >= mod ? x + y - mod : x + y;
}
int mul(int x, int y) {
    x = (x + mod) % mod; y = (y + mod) % mod;
    return 1ll * x * y % mod;
}
int solve(int id, int o, int N) {//这里dp的时候不能直接表示有j个活着,必须表示除i之外有j个活着。。 
    memset(g, 0, sizeof(g));
    g[0][0] = 1; 
    for(int i = 1; i <= N; i++) {
        for(int j = 0; j <= N; j++) {
            if(em[i] ^ id) {
                g[i][j] = mul(g[i - 1][j], t[o][em[i]][0]);
                if(j) g[i][j] = add(g[i][j], mul(g[i - 1][j - 1], 1 - t[o][em[i]][0]));
            }
            else g[i][j] = g[i - 1][j];
        }
    }
    int ans = 0;
    for(int i = 0; i < N; i++) 
        ans = add(ans, mul(mul(1 - t[o][id][0], g[N][i]), inv(i + 1)));
    return ans;
}
signed main() {
//  freopen("a.in", "r", stdin);
//  freopen("b.out", "w", stdout);
    N = read();
    for(int i = 1; i <= N; i++) a[i] = read(), t[0][i][a[i]] = 1, f[0][i] = a[i];
    Q = read();
    int o = 1;
    for(int i = 1; i <= Q; i++, o ^= 1) {
        int opt = read();
        memcpy(t[o], t[o ^ 1], sizeof(t[o]));
        if(opt == 0) {//
            int id = read(), u = read(), v = read(), p = 1ll * u * inv(v) % mod;
            t[o][id][0] = add(t[o][id][0], mul(p, t[o][id][1]));
            for(int j = 1; j <= a[id]; j++) t[o][id][j] = add(mul(p, t[o ^ 1][id][j + 1]), mul(1 - p, t[o ^ 1][id][j]));
        } else if(opt == 1) {
            int k = read(), cnt = 0;
            for(int i = 1; i <= k; i++) em[++cnt] = read();
            for(int i = 1; i <= k; i++) printf("%d ", solve(em[i], o, cnt)); puts("");
        }
    }
    for(int i = 1; i <= N; i++) {
        int ans = 0;
        for(int j = 1; j <= a[i]; j++) 
            ans = add(ans, mul(j, t[o ^ 1][i][j]));
        printf("%d ", ans);
        
    }
    return 0;
}
/*
*/

100分

#include<bits/stdc++.h>
//#define int long long 
using namespace std;
const int MAXN = 201, mod = 998244353;
int f[2][MAXN], g[MAXN][MAXN], t[2][MAXN][MAXN];
// f: expect 
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, a[MAXN], Q, em[MAXN], ans[MAXN], ali[MAXN], tp[MAXN], Inv[MAXN];
int add(int x, int y) {
    if(x + y < 0) return x + y + mod;
    else return x + y >= mod ? x + y - mod : x + y;
}
int mul(int x, int y) {
    x = (x + mod) % mod; y = (y + mod) % mod;
    return 1ll * x * y % mod;
}
int fp(int a, int p) {
    int base = 1;
    while(p) {
        if(p & 1) base = 1ll * base * a % mod;
        a = 1ll * a * a % mod; p >>= 1;
    }
    return base;
}
int inv(int a) {
    a = add(a, mod);
    return fp(a, mod - 2);
}

void Pre(int o, int N) {
//  memset(g, 0, sizeof(g));
    g[0][0] = 1; 
    for(int i = 1; i <= N; i++) {
        ali[i] = (1 - t[o][em[i]][0] + mod) % mod;//alive
        for(int j = 0; j <= i; j++) {
            g[i][j] = mul(g[i - 1][j], t[o][em[i]][0]);
            if(j) g[i][j] = add(g[i][j], mul(g[i - 1][j - 1], ali[i]));
        }
    }   
}
int solve(int id, int o, int N) {
    //memset(tp, 0, sizeof(tp));
    if(!ali[id]) return 0;
    if(ali[id] == 1) {
        for(int i = 1; i <= N; i++) tp[i - 1] = g[N][i];
    } else {
        int down = inv(1 - ali[id]);
        tp[0] = mul(g[N][0], down);
        for(int i = 1; i <= N; i++) 
            tp[i] = mul(g[N][i] - mul(tp[i - 1], ali[id]), down);
    }

    int ans = 0;
    for(int i = 1; i <= N; i++) 
        ans = add(ans, mul(mul(ali[id], tp[i - 1]), Inv[i]));
    return ans;
}
signed main() {
    //freopen("faceless10.in", "r", stdin);
//  freopen("b.out", "w", stdout);
    N = read();
    for(int i = 1; i <= N; i++) a[i] = read(), t[0][i][a[i]] = 1, f[0][i] = a[i], Inv[i] = inv(i);
    Q = read();
    int o = 1;
    for(int i = 1; i <= Q; i++, o ^= 1) {
        int opt = read();
        memcpy(t[o], t[o ^ 1], sizeof(t[o]));
        if(opt == 0) {//
            int id = read(), u = read(), v = read(), p = 1ll * u * inv(v) % mod;
            t[o][id][0] = add(t[o][id][0], mul(p, t[o][id][1]));
            for(int j = 1; j <= a[id]; j++) t[o][id][j] = add(mul(p, t[o ^ 1][id][j + 1]), mul(1 - p, t[o ^ 1][id][j]));
        } else if(opt == 1) {
            int k = read();
            for(int i = 1; i <= k; i++) em[i] = read();
            Pre(o, k);
            for(int i = k; i >= 1; i--) ans[i] = solve(i, o, k);
            for(int i = 1; i <= k; i++) printf("%d ", ans[i]); puts("");
        }
    }
    for(int i = 1; i <= N; i++) {
        int ans = 0;
        for(int j = 1; j <= a[i]; j++) 
            ans = add(ans, mul(j, t[o ^ 1][i][j]));
        printf("%d ", ans);
        
    }
    return 0;
}
/*
*/

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • ZR国庆Round2解题报告

    然后刚T3暴力,刚完还有2h左右。。然后,,这时候我zz的选择去打T2的暴力,然而T2暴力真的不是一般的难写。。

    attack
  • 洛谷P3809 【模板】后缀排序

    题目背景 这是一道模板题。 题目描述 读入一个长度为 nn 的由大小写英文字母或数字组成的字符串,请把这个字符串的所有非空后缀按字典序从小到大排序,然后按顺序输...

    attack
  • 洛谷P4424 [HNOI/AHOI2018]寻宝游戏(思维题)

    那么我们把每一列上的数和他之前的操作符分别拿出来看成一些序列,显然这个序列要满足最后一个\(\mid 1\)要在\(\& 0\)之后

    attack
  • 第88场周赛

    第二反应:根据上述这个模拟超时过程,想一优化,shifts数组后面开始,逐个偏移,根据描述,后面的偏移会加到前面。于是有了后缀和这一说法。

    用户1145562
  • 【计算机本科补全计划】CCF计算机职业资格认证 2016-09 试题详解

    正文之前 我要东山再起了!!没错CCF迫在眉睫(其实是我以为报名之后一个月才考,结果报名截止之后一周就考试!(╯‵□′)╯︵┻━┻!!!还能好好做朋友吗!!)所...

    用户1687088
  • HDU 2196 Computer(树的直径)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2196

    Ch_Zaqdt
  • HDU 2503 a/b + c/d(最大公约数与最小公倍数,板子题)

    话不多说,日常一水题,水水更健康!┗|`O′|┛ 嗷~~ a/b + c/d Time Limit: 1000/1000 MS (Java/Others)   ...

    Angel_Kitty
  • ZR国庆Round2解题报告

    然后刚T3暴力,刚完还有2h左右。。然后,,这时候我zz的选择去打T2的暴力,然而T2暴力真的不是一般的难写。。

    attack
  • LeetCode31|打印从1到最大的n位数

    这道题算是api的使用方式了,数据的计算,其实自己也没有什么好说的了,但是由于文章的字数必需要达到300字,所有有些时候就只好在这里唠会嗑了,因为文章的原创对于...

    码农王同学
  • 牛客小白月赛11D(分治、RMQ)

    定义一个玄学节点叫做 R,每次操作读入 val ,执行 Insert(R,val)。

    ACM算法日常

扫码关注云+社区

领取腾讯云代金券