利用深度学习建立流失模型(附完整代码)

作者:王向君,一个不会运营的数据分析师不是好产品经理

博客:zhihu.com/people/chen-guan-xi-11-65

作者投稿邮箱:pythonpost@163.com、知乎专栏Python中文社区

客户流失分析

失去一个老用户会带来巨大的损失,大概需要公司拉新10个新用户才能予以弥补。如何预测客户即将流失,让公司采取合适的挽回措施,是每个公司都要关注的重点问题。

目标

利用类神经网络构建用户流失分析模型,以预测用户是否有流失的可能。

工具

  • Jupyter Notebook :一个对于数据分析师来说特别合适的Python编辑器,强烈推荐大家去使用。
  • Python:在机器学习时代,Python是最受欢迎的机器学习语言。有很多机器学习的库,可以方便高效的去实现机器学习。

主要用到的Python包

  • pandas:是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包。能很方便的进行各种数据清洗。是每个数据分析师必学的Python包之一。
  • sklearn:是机器学习中一个常用的第三方包,里面对一些常用那个的机器学习方法进行了封装,使得大家能够更加简单的使用机器学习的方法。本文主要用这个包进行训练数据集和测试数据集的拆分以及数据尺度的标准化。
  • Keras:是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow、Theano以及CNTK后端。本文是基于Tensorflow后端构建神经网络模型。Tensorflow是谷歌开发的一个开源的人工智能库。

接下来我们真正进入实战部分:

读取用户流失测试数据

#载入pandas包来读取csv格式的数据集
import pandas as pd
#把 csv格式的数据集导入到DataFrame对象中
df = pd.read_csv('C:/Users/36540/Desktop/lossertest.csv',  header = 0)
df.head() 

我们首先使用pandas包把csv格式的数据集导入DataFrame对象中,大概介绍下数据集的对象,从左到右分别是,用户ID、国家、注册时间、B类用户标记、最近登录时间、购买次数、购买金额、流失标记。

数据清洗

我们需要把所有的数据转化为数值型的数据,且没有缺失值。

#把totalPaiedAmount列也就是用户付款金额的缺失值替换为0
df['totalPaiedAmount'] = df['totalPaiedAmount'].fillna(0)
df['totalBuyCount'] = df['totalBuyCount'].fillna(0)

根据业务逻辑,首先把用户付款次数和付款金额的缺失值替换为0。

#利用pandas中的to_datetime函数把字符串的日期变为时间序列
df['registrationTime'] = pd.to_datetime(df['registrationTime'], format='%Y-%m-%d %H:%M:%S')
df['registrationTime'] 

直接导入的pandas的数据是字符串格式的时间,我们需要将数据转化为时间序列格式。这里用到pandas自带的to_datetime函数,可以方便快速的把字符串转化为时间序列。

#同理最近登录时间也转化为实践序列
df['lastLoginTime'] = pd.to_datetime(df['lastLoginTime'], format='%Y-%m-%d %H:%M:%S') 
df['lastLoginTime']

根据业务逻辑需要把时间转化为距今的时间间隔。

import datetime
#获取当前时间
now_time = datetime.datetime.now()
now_time

根据datetime包,获取当前的时间。

df['lastLoginTime'] = now_time-df['lastLoginTime']
df['registrationTime']

在DataFrame对象中,可以直接对2个时间格式数据进行相减,得到时间间隔。但是这个不是数值型,我们还需要进行处理。

先根据业务逻辑把最近登录时间缺失的部分替换为注册时间。

#把最近登录时间列的空值替换为同索引行注册时间列的值
df.loc[df['lastLoginTime'].isnull(),'lastLoginTime']=df[df['lastLoginTime'].isnull()]['registrationTime']
df['registrationTime']

根据pandas中自带的isnull可以很方便的替换缺失值。

#因为数据量有点大,取前1w行数据测试下
df = df.iloc[0:1000]
#把时间间隔转化为数值型的天数
j = 0
for i in df['registrationTime']:
    df = df.replace(df['registrationTime'][j],i.days)
    j += 1

建立一个for循环把所有的时间隔间转化为数值型的时间隔间天数,.days函数可以方便获取时间隔间的天数。经过我是实践发现,Python对于这个转化的处理速度很慢。所以我就取了前1000条数据进行测试处理。建议大家还是在mysql中直接用时间函数获取时间差天数,数据库中的处理速度快了很多。我50W+的数据只要10几秒就可以完成。

#不知道为什么这样操作就会报错,欢迎大家研究研究
for i in range(0,df['registrationTime']):
    df = df.replace(df['registrationTime'][i],df['registrationTime'][i].days)

我本来是这样编写for循环的,不知道为什么运行几条就报错。差了很多资料也没找到原因。也欢迎大家研究研究。找到原因可以评论或者私信我。

到这里数据清洗也就基本完成了,我来最后检查一遍,数据集是否还有缺失值。

#对数据集进检查,看看是否还有缺失值
df[df.isnull().values==True]

可以发现,还有缺失值的列已经不存在了。接下来就把第一列对于结果无关的用户ID列删除。

#把第一列无用的用户ID列删除
df = df.iloc[:,1:]

数据清洗步骤就全部完成了,我再来看看数据集现在的样子,来最终检查一遍处理结果。

df.head()
df.info()

可以发现所有的数据都已经变成float64或者 int64,已经达到了我们处理的目的。

接下来把输入输出项确定下,前6列是输入的指标,最后一列流失标记是输出项。

#把输入输出项确定下
y = df.iloc[:,-1]
x = df.iloc[:,:-1]
x.shape
y.shape

可以发现输入项是1000行数据,6列。输出是1000行数,1列。

区分训练与测试数据集

#sklearn把数据集拆分成训练集和测试集
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.33, random_state = 123)
x_train.shape
y_train.shape
x_test.shape
y_test.shape

利用sklearn包中的train_test_split函数可以很方便的区分训练集和测试集。test_size代表测试的大小,0.33也就是训练集和测试集的比为3:1,random_state代表区分的随机标准,这个如果不确定的话,每次拆分的结果也就是不一样,这属性是为了数据可以复现。大家不要使用123,可以随意填写。从上图可以看到,数据已经被拆分为670行和330行2个数据集了。

尺度标准化

所有神经网络的输入层必须进行标准处理,因为不同列的大小是不一样,这样的话没法进行对比。所以需要对数据集进行标准化处理。

#使用sklearn把数据集进行尺度标准化
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.fit_transform(x_test)
x_test

sklearn包中的StandardScaler函数可以方便对数据进行去均值和方差归一化处理。首先定义一个对象,sc = StandardScaler(),然后把数据集放进去就可以直接输出一个标准化完成的数据集。输出的数据集如上图所示。

训练ANN

#使用keras包搭建人工神经网络
import keras
#序贯(Sequential)模型包
from keras.models import Sequential
#神经网络层
from keras.layers import Dense
#优化器
from keras.optimizers import SGD
#创建一个空的神经网络模型
classifier = Sequential()

我们利用keras包来交轻松的完成人工神经网络的搭建。首先载入一个序贯(Sequential)模型。序贯模型是多个网络层的线性堆叠,也就是“一条路走到黑”。可以通过向Sequential模型传递一个layer的list来构造该模型,也可以通过.add()方法一个个的将layer加入模型中。本文采用.add()方法将2层神经网络输入模型中。优化器的选择是SGD,因为本来数据量比较小,而且训练次数也不多,所以选择最贱简答的SGD。平时对于性能的有要求的可以使用Adam优化器。

#创建输入层
classifier.add(Dense(units = 3, kernel_initializer = 'uniform', activation = 'relu', input_dim = 6))
#创建输出层
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))

将神经网络的输入输出层添加到模型中。

Dense就是常用的全连接层,所实现的运算是output = activation(dot(input, kernel)+bias)

参数

  • units:大于0的整数,代表该层的输出维度。一般为输入项的一半,但是真正合适的值还是要经过多次训练才能得出。
  • activation:激活函数,为预定义的激活函数名(参考激活函数),或逐元素(element-wise)的Theano函数。如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)。本文用的relu和sigmoid。都是最基础的。
  • bias_initializer:偏置向量初始化方法,为预定义初始化方法名的字符串,或用于初始化偏置向量的初始化器。不同的层可能使用不同的关键字来传递初始化方法,一般来说指定初始化方法的关键字。本文用的Glorot均匀分布初始化方法,又成Xavier均匀初始化,参数从[-limit, limit]的均匀分布产生,其中limit为sqrt(6 / (fan_in + fan_out))。fan_in为权值张量的输入单元数,fan_out是权重张量的输出单元数。

形如(batch_size, …, input_dim)的nD张量,最常见的情况为(batch_size, input_dim)的2D张量。

classifier.compile(loss='binary_crossentropy',
              optimizer=SGD(),
              metrics=['accuracy'])

history = classifier.fit(x_train, y_train,
                    batch_size=10,
                    epochs=100,
                    validation_data=(x_test, y_test))

然后设置模型的损失函数loss为binary_crossentropy(亦称作对数损失,logloss)。目标函数,或称损失函数,是编译一个模型必须的两个参数之一。

优化器选择了SGD,也就是最简单基础的一个优化器。

性能评估模块提供了一系列用于模型性能评估的函数,这些函数在模型编译时由metrics关键字设置。性能评估函数类似与目标函数, 只不过该性能的评估结果讲不会用于训练。

Keras以Numpy数组作为输入数据和标签的数据类型。训练模型一般使用fit函数。把训练集输入,然后batch_size选择每次训练数量,epochs是训练的次数。validation_data验证的数据集。

最后看到上面的训练结果loss为0.0973,acc为0.9612。这个结果已经是一个比较好的结果。

评估模型

y_pred = classifier.predict(x_test)
y_pred

利用predict把测试集的结果输出来,输出的是0-1的概率值,我可以假设大于0.5为流失,把结果转化为0和1和结果。0.5只是一个大概的值,最合适的话还是要自己去测试得出。

y_pred = (y_pred > 0.5)
y_pred.shape
y_pred.flatten().astype(int)

最终把结果转化为0和1和,通过flatten吧数据转化为一维的数据,并且利用astype(int)把True和False转化为0和1。

from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_pred )

根据accuracy_score直接得到结果,可以发现结果为0.9727,这个数据是好的结果。准确率有97%。但是我们仅仅看着数据是不够的,因为假如1000个人里只有50个流失,那我全部乱猜为不流失,这样准确率也有95%。所以要再看看流失和非流失的准确率。

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred )
cm

可以发现非流失用户全部猜对,但是流失的只对了3个。说明模型对于非流失用户的准确性还需要提高。结果看看更加详细的结果。

from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))

利用classification_report函数直接获取结果。我们观察结果可以发现,流失用户的f1-score只有0.40.这是比较小的值,还有很大的提高空间。虽然全部用户的准确率97%,看上去很美好,实际一拆分的结果并不如人意。当然这里只是一个测试的结果,后续我们可以增加输入层的数据指标,增加训练的次数去提高准确率。

原文发布于微信公众号 - Python中文社区(python-china)

原文发表时间:2018-11-03

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CreateAMind

keras中文文档

Keras是一个极简和高度模块化的神经网络库,Keras由纯Python编写而成并基于Theano或Tensorflow。Keras 为支持快速实验而生,如果你...

31650
来自专栏大数据挖掘DT机器学习

如何使用sklearn进行数据挖掘?

1.1 数据挖掘的步骤 数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤。使用sklearn工具可以方便地进行特征工程和模型训练工作,在...

43260
来自专栏SimpleAI

【DL笔记5】一文上手TensorFlow,并搭建神经网络实现手写数字识别

从【DL笔记1】到【DL笔记N】,是我学习深度学习一路上的点点滴滴的记录,是从Coursera网课、各大博客、论文的学习以及自己的实践中总结而来。从基本的概念、...

11560
来自专栏机器之心

亚马逊开源神经机器翻译框架Sockeye:基于Apache MXNet的NMT平台

选自Amazon 机器之心编译 参与:机器之心编辑部 随着神经机器翻译(NMT)技术的不断演进,越来越多的科研机构和公司选择开源自己的项目,让更多人能够开发出自...

35980
来自专栏程序员宝库

使用 JavaScript 实现机器学习和神经学网络

英文:JeffHeaton 译文: 云+社区/白加黑大人 https://cloud.tencent.com/developer/article/103589...

396100
来自专栏Python小屋

Python扩展库scipy中值滤波算法的应用

中值滤波是数字信号处理、数字图像处理中常用的预处理技术,特点是将信号中每个值都替换为其邻域内的中值,即邻域内所有值排序后中间位置上的值。下面的代码演示了scip...

52460
来自专栏SIGAI学习与实践平台

时空建模新文解读:用于高效视频理解的TSM

接着之前的《浅谈动作识别TSN,TRN,ECO》,我们来谈谈最近 MIT和IBM Watson 的新文 Temporal Shift Module(TSM)[1...

15830
来自专栏机器之心

学界 | 斯坦福提出神经任务编程NTP:让机器人从层级任务中学习

选自arXiv 机器之心编译 参与:朱乾树、蒋思源 斯坦福视觉与学习实验室与加州大学提出神经任务编程(NTP),它可以将指定任务作为输入,并递归地将该任务分解成...

37690
来自专栏AI科技大本营的专栏

AI实践精选:艺术家如何应用RNN(循环神经网络)创作AI化的艺术作品

文章导读:这篇文章不是为了全面深入的介绍循环神经网络(recurrent neural networks),而是为那些没有任何机器学习(machine lear...

37270
来自专栏ATYUN订阅号

验证码,再见!利用机器学习在15分钟内破解验证码

每个人都讨厌验证码——只有输入了那些讨厌的图片上的文本,才能访问网站。验证码的设计是为了防止计算机自动填写表格,验证你是一个真实的“人”。但随着深度学习和计算机...

54150

扫码关注云+社区

领取腾讯云代金券