最强数据集集合:50个最佳机器学习公共数据集丨资源

原作 mlmemoirs 郭一璞 编译 量子位 报道

外国自媒体mlmemoirs根据github、福布斯、CMU官网等信息,整理了一张50个最佳机器学习公共数据集的榜单,量子位为大家分享一下~

提前说两个须知:

寻找数据集の奥义

根据CMU的说法,寻找一个好用的数据集需要注意一下几点:

数据集不混乱,否则要花费大量时间来清理数据。 数据集不应包含太多行或列,否则会难以使用。 数据越干净越好,清理大型数据集可能非常耗时。 应该预设一个有趣的问题,而这个问题又可以用数据来回答。

去哪里找数据集

Kaggle:爱竞赛的盆友们应该很熟悉了,Kaggle上有各种有趣的数据集,拉面评级、篮球数据、甚至西雅图的宠物许可证。 https://www.kaggle.com/

UCI机器学习库:最古老的数据集源之一,是寻找有趣数据集的第一站。虽然数据集是用户贡献的,因此具有不同的清洁度,但绝大多数都是干净的,可以直接从UCI机器学习库下载,无需注册。 http://mlr.cs.umass.edu/ml/

VisualData:分好类的计算机视觉数据集,可以搜索~ https://www.visualdata.io/

好了,下面就是那50个数据集了,由于后期加上了一些补充,所以总数已经超过了50。

机器学习数据集

图片

Labelme:带注释的大型图像数据集。 http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php

ImageNet:大家熟悉的ImageNet,女神李飞飞参与创建,同名比赛影响整个计算机视觉界。 http://image-net.org/

LSUN:场景理解与许多辅助任务(房间布局估计,显着性预测等) http://lsun.cs.princeton.edu/2016/

MS COCO:同样也是知名计算机视觉数据集,同名比赛每年都被中国人屠榜。 http://mscoco.org/

COIL 100 :100个不同的物体在360度旋转的每个角度成像。 http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php

视觉基因组:非常详细的视觉知识库。 http://visualgenome.org/

谷歌开放图像:在知识共享下的900万个图像网址集合“已经注释了超过6000个类别的标签”。 https://research.googleblog.com/2016/09/introducing-open-images-dataset.html

野外标记面:13000张人脸标记图像,用于开发涉及面部识别的应用程序。 http://vis-www.cs.umass.edu/lfw/

斯坦福狗子数据集:20580张狗子的图片,包括120个不同品种。 http://vision.stanford.edu/aditya86/ImageNetDogs/

室内场景识别:包含67个室内类别,15620个图像。 http://web.mit.edu/torralba/www/indoor.html

情绪分析

多域情绪分析数据集:一个稍老一点的数据集,用到了来自亚马逊的产品评论。 http://www.cs.jhu.edu/~mdredze/datasets/sentiment/

IMDB评论:用于二元情绪分类的数据集,不过也有点老、有点小,有大约25000个电影评论。 http://ai.stanford.edu/~amaas/data/sentiment/

斯坦福情绪树库:带有情感注释的标准情绪数据集。 http://nlp.stanford.edu/sentiment/code.html

Sentiment140:一个流行的数据集,它使用160,000条预先删除表情符号的推文。 http://help.sentiment140.com/for-students/

Twitter美国航空公司情绪:2015年2月美国航空公司的Twitter数据,分类为正面,负面和中性推文。 https://www.kaggle.com/crowdflower/twitter-airline-sentiment

自然语言处理

HotspotQA数据集:具有自然、多跳问题的问答数据集,具有支持事实的强大监督,以实现更易于解释的问答系统。 https://hotpotqa.github.io/

安然数据集:来自安然高级管理层的电子邮件数据。 https://www.cs.cmu.edu/~./enron/

亚马逊评论:包含18年来亚马逊上的大约3500万条评论,数据包括产品和用户信息,评级和文本审核。 https://snap.stanford.edu/data/web-Amazon.html

Google Books Ngrams:Google Books中的一系列文字。 https://aws.amazon.com/datasets/google-books-ngrams/

Blogger Corpus:收集了来自blogger.com的681,288篇博文,每篇博文至少包含200个常用英语单词。 http://u.cs.biu.ac.il/~koppel/BlogCorpus.htm

维基百科链接数据:维基百科的全文,包含来自400多万篇文章的近19亿个单词,可以按段落、短语或段落本身的一部分进行搜索。 https://code.google.com/p/wiki-links/downloads/list

Gutenberg电子书列表:Gutenberg项目中带注释的电子书书单。 http://www.gutenberg.org/wiki/Gutenberg:Offline_Catalogs

Hansards加拿大议会文本:来自第36届加拿大议会记录的130万组文本。 http://www.isi.edu/natural-language/download/hansard/

Jeopardy:来自问答节目Jeopardy的超过200,000个问题的归档。 http://www.reddit.com/r/datasets/comments/1uyd0t/200000_jeopardy_questions_in_a_json_file/

英文垃圾短信收集:由5574条英文垃圾短信组成的数据集。 http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/

Yelp评论:Yelp,就是美国的“大众点评”,这是他们发布的一个开放数据集,包含超过500万条评论。 https://www.yelp.com/dataset

UCI的Spambase:一个大型垃圾邮件数据集,对垃圾邮件过滤非常有用。 https://archive.ics.uci.edu/ml/datasets/Spambase

自动驾驶

Berkeley DeepDrive BDD100k:目前最大的自动驾驶数据集,包含超过100,000个视频,其中包括一天中不同时段和天气条件下超过1,100小时的驾驶体验。其中带注释的图像来自纽约和旧金山地区。 http://bdd-data.berkeley.edu/

百度Apolloscapes:度娘的大型数据集,定义了26种不同物体,如汽车、自行车、行人、建筑物、路灯等。 http://apolloscape.auto/

Comma.ai:超过7小时的高速公路驾驶,细节包括汽车的速度、加速度、转向角和GPS坐标。 https://archive.org/details/comma-dataset

牛津的机器人汽车:这个数据集来自牛津的机器人汽车,它于一年时间内在英国牛津的同一条路上,反反复复跑了超过100次,捕捉了天气、交通和行人的不同组合,以及建筑和道路工程等长期变化。 http://robotcar-dataset.robots.ox.ac.uk/

城市景观数据集:一个大型数据集,记录50个不同城市的城市街景。 https://www.cityscapes-dataset.com/

CSSAD数据集:此数据集对于自动驾驶车辆的感知和导航非常有用。不过,数据集严重偏向发达国家的道路。 http://aplicaciones.cimat.mx/Personal/jbhayet/ccsad-dataset

KUL比利时交通标志数据集:来自比利时法兰德斯地区数以千计的实体交通标志的超过10000条注释。 http://www.vision.ee.ethz.ch/~timofter/traffic_signs/

MIT AGE Lab:在AgeLab收集的1,000多小时多传感器驾驶数据集的样本。 http://lexfridman.com/automated-synchronization-of-driving-data-video-audio-telemetry-accelerometer/

LISA:UC圣迭戈智能和安全汽车实验室的数据集,包括交通标志、车辆检测、交通信号灯和轨迹模式。 http://cvrr.ucsd.edu/LISA/datasets.html

博世小交通灯数据集:用于深度学习的小型交通灯的数据集。 https://hci.iwr.uni-heidelberg.de/node/6132

LaRa交通灯识别:巴黎的交通信号灯数据集。 http://www.lara.prd.fr/benchmarks/trafficlightsrecognition

WPI数据集:交通灯、行人和车道检测的数据集。 http://computing.wpi.edu/dataset.html

临床

MIMIC-III:MIT计算生理学实验室的公开数据集,标记了约40000名重症监护患者的健康数据,包括人口统计学、生命体征、实验室测试、药物等维度。 https://mimic.physionet.org/

一般数据集

除了机器学习专用的数据集,还有一些其他的一般数据集,可能很有趣~

公共政府数据集

Data.gov:该网站可以从多个美国政府机构下载数据,包括各种奇怪的数据,从政府预算到考试分数都有。不过,其中大部分数据需要进一步研究。 https://www.data.gov/

食物环境地图集:本地食材如何影响美国饮食的数据。 https://catalog.data.gov/dataset/food-environment-atlas-f4a22

学校财务系统:美国学校财务系统的调查。 https://catalog.data.gov/dataset/annual-survey-of-school-system-finances

慢性病数据:美国各地区慢性病指标数据。 https://catalog.data.gov/dataset/u-s-chronic-disease-indicators-cdi-e50c9

美国国家教育统计中心:教育机构和教育人口统计数据,不仅有美国的数据,也有一些世界上其他地方的数据。 https://nces.ed.gov/

英国数据服务:英国最大的社会、经济和人口数据集。 https://www.ukdataservice.ac.uk/

数据美国:全面可视化的美国公共数据。 http://datausa.io/

量子位补充一句,我国国家统计局其实也不错。 http://www.stats.gov.cn/

金融与经济

Quandl:经济和金融数据的良好来源,有助于建立预测经济指标或股票价格的模型。 https://www.quandl.com/

世界银行开放数据:全球人口统计数据,还有大量经济和发展指标的数据集。 https://data.worldbank.org/

国际货币基金组织数据:国际货币基金组织公布的有关国际金融,债务利率,外汇储备,商品价格和投资的数据。 https://www.imf.org/en/Data

金融时报市场数据:来自世界各地的金融市场的最新信息,包括股票价格指数,商品和外汇。 https://markets.ft.com/data/

Google Trends:世界各地的互联网搜索行为和热门新闻报道的数据。 http://www.google.com/trends?q=google&ctab=0&geo=all&date=all&sort=0

美国经济协会:美国宏观经济数据。 https://www.aeaweb.org/resources/data/us-macro-regional

传送门

mlmemoirs:50个最佳机器学习公共数据集 https://medium.com/datadriveninvestor/the-50-best-public-datasets-for-machine-learning-d80e9f030279

子曰:世界上有三个互联网,美国互联网、中国互联网和欧洲互联网。

故其中有一些链接,需要先探究科学上网方式,再打开。

暂时手头没有工具怎么办?先收藏呀!

在最下边点“阅读原文”,可前往知乎版,有可戳的超链接。

原文发布于微信公众号 - 量子位(QbitAI)

原文发表时间:2018-11-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏镁客网

研究表明:狗的神经元数是猫的两倍,狗或比猫聪明 | 黑科技

1560
来自专栏CDA数据分析师

收藏丨学习数据科学不可错过的优质资源

大约两个月前,我开始学习数据科学。我并没有统计学、数学、数据科学、工程学、经济学方面的学位。说实话,在学生时代,数学和统计并不是我的强项,我更擅长语言方面。

911
来自专栏IT派

人工智能画出的人体艺术是什么样子的?

通常,要创作人类的裸体肖像,当然是需要人类自己来完成。不过随着技术的发展,这种情况正在改变

2090
来自专栏量子位

顶会ICML特别开设“怼日”Workshop,意见不同您尽管来

前有NIPS获奖者登台开炮称机器学习是炼金术,怀念质疑各种想法不严谨的“学术警察”;后有马库斯NIPS研讨会上强硬质疑哈萨比斯,认为AlphaZero依赖了某些...

891
来自专栏TEG云端专业号的专栏

当AI被“蒙蔽”,犯罪分子能做些什么?

我曾见过你们人类绝对无法置信的事物; 我看见战舰在猎户星座边缘被击中,燃起熊熊火光; 我看见C射线划过天国之门,闪耀在无边的幽暗中; 然而所有片段,所有瞬间,都...

2928
来自专栏CDA数据分析师

数据挖掘在金融风险预警中的应用!

金融风险预警是金融数据挖掘中的一个重要研究方向,由于金融数据具有类型多样、关系复杂、数据动态性、数据量大等一般特征,此外还有高噪音、非 正态等特征。因此,金融风...

2115
来自专栏北京马哥教育

Python股市数据分析教程——学会它,或可以实现半“智能”炒股 (Part 1)

摘要:本篇文章是"Python股市数据分析"两部曲中的第一部分,主要介绍金融数据分析的背景以及移动均线等方面的内容。 本篇文章是"Python股市数据分析"两部...

40610
来自专栏机器之心

深度 | 从规则推理到数据学习:人工智能该学习人类的思维方式吗?

1568
来自专栏机器学习算法与Python学习

走近Hinton:AI教父传奇人生

三十多年以来,Geoffrey Hinton一直都处于人工智能研究的边缘地带。他像一个局外人一样坚守着一个简单的观点:计算机可以像人类一样,依靠直觉而不是规则进...

953
来自专栏新智元

17岁!Kaggle史上最年轻Grandmaster诞生:高中自学3年登顶

在AI和大数据圈的人,应该没有不知道Kaggle的,这是全球首屈一指的数据科学、机器学习竞赛和分享平台。去年被谷歌收购时还一度引发业界轰动。企业和研究者可以在K...

1332

扫码关注云+社区

领取腾讯云代金券