专栏首页量子位飞步神速!何晓飞团队完成无人车深度学习芯片流片,算力创国内新高

飞步神速!何晓飞团队完成无人车深度学习芯片流片,算力创国内新高

李根 发自 凹非寺 量子位 报道

飞步神速!

何晓飞教授自开启无人车创业以来,一如治学,过程中始终低调,但并不意味着没有大进展。

这不,这位浙大计算机系知名教授、滴滴研究院创始院长、滴滴无人车开创者,最近又迈出了一大步。

量子位获悉,就在今年9月,由飞步科技研发、具备完全自主知识产权的国产28nm深度学习加速器,在台积电完成流片。

这也意味着,随着此核心系统完成攻坚,距离之前透露的感知芯片系统推出,仅剩一步之遥。

国内车载最强算力芯片

飞步的感知系统芯片,代号凤凰-100,是其无人驾驶车载计算平台的核心。

而此次成功流片的深度学习加速器,则是整个感知芯片最具技术挑战部分。

性能表现上,此次流片的28 nm感知深度学习加速器,具有>1GHz的运算频率、以及>4TOPs的超强计算能力,功耗和成本等各项关键指标,也取得重要突破,为国内车载芯片最高算力,完全支持L3/L4的实时数据处理需求。

而且值得一提的是,芯片整套方案,飞步具有自主知识产权。

或许你会好奇,别人的无人驾驶初创公司,主要进展都出自环境感知、地图定位、规划控制等软件算法方面,为何飞步一出手,率先突破点在于芯片?

何晓飞解释,飞步在算法方面也都在稳步推进,但都是“必修课”。

只有迎难而上,让算法和芯片——软件和硬件形成组合拳,才能够软硬件一体,将AI能力发挥到极致。

这样才能构建起飞步科技的核心竞争力。

无人驾驶芯片之挑战

当然,算力瓶颈、软硬件一体挑战,无人驾驶业内并非不知,但创业公司尝试,风险并不小。

关键难题有三项,在无人驾驶的特定环境,对芯片有三高一低的极致要求。

  • 首先,无人驾驶对AI芯片算力要求极高,车速越快,路况信息越多,计算平台的压力负荷就越大。
  • 其次,无人驾驶对终端计算的实时性要求极高,任何滞后都可能造成车毁人亡的惨剧,也决定了芯片的核心计算和决策速度是重中之重。
  • 此外,无人驾驶对芯片的可靠性要求也极高,系统故障、死机等情况,在汽车无人驾驶的状态下不可想象,而严寒酷暑、刮风下雨等恶劣天气条件,也都需要芯片保持稳定的计算和续航能力。
  • 最后,芯片的能耗则是“越低越好”,优异的能耗表现,是AI芯片面对海量数据时从容不迫的底气来源。

飞步凤凰芯片

正是从一开始就看清楚了挑战所在,所以创业启动后,何晓飞和飞步科技,就确立了软硬件并行研发的发展模式。

与行业内普遍解决方案不同的是,飞步采用专用芯片(ASIC)替代传统CPU/GPU,作为车载芯片的终极集成方案。

相对于通用芯片,专用智能芯片的优势不言而喻——集成度提高十倍,信息处理速度加快百倍,功耗却只有1/10,综合性能跃升两到三个量级。

专用智能芯片方案优势明显,研发难度却非常大,需要设计者对无人驾驶场景、软件、算法和芯片架构极度熟悉。

当然,之前也介绍过,飞步为芯片还组建了一支世界级团队。

飞步的芯片团队由联合创始人曹宇负责,他是UC伯克利电子工程博士,大规模集成电路领域世界级专家,IEEE Fellow,参与飞步创业前,是亚利桑那州电子工程系教授,研究成果已经成功应用在英特尔、高通、IBM等设计技术中。

芯片架构负责人Hang Nguyen,前英特尔首席架构师,芯片架构国际级顶尖专家,在芯片行业有35年经验,50多项专利。领导了多种英特尔低功耗移动芯片的架构和微架构涉及,开发了英特尔首款采用PCI Express和存储加速集成的嵌入式Xeon系列处理器。

系统芯片集成专家刘浩,前高通首席工程师,移动系统芯片(SoC)集成主管。之前领导了全世界第一款4G芯片和多款高端骁龙芯片的研发和流片。

最终,因人成事,事在人为。

经过近1年研发,飞步感知芯片中最关键的深度学习加速器在9月完成流片。

该芯片基于飞步自创的MPV架构,支持相机、激光雷达和毫米波雷达等多种传感器接入,对环境进行实时高精度的三维感知。已具备国内车载芯片的最高算力。

首创MPV计算架构

此外值得注意的是,采用ASIC集成平台,只是飞步针对车载智能芯片革新换代的第一步。

凤凰计算平台,才是飞步无人车真正雄心。

为打造无人驾驶适用的计算平台,飞步还首创了深度学习专用的MPV架构设计。

  • M指系统超大规模化(Massive)
  • P是并行化(Parallel)
  • V则指代模组化(Volumetric)

这个MPV架构,可以更好发挥深度学习、无人驾驶算法的优势。

由于高效和低功耗的特点,可以针对加速同步、识别、跟踪、预测、规划等关键环节提供强大的技术支撑。

而且得益于MPV架构得天独厚的优势,凤凰平台的飞步无人驾驶专用芯片,能根据全栈无人驾驶算法量体定制,囊括包含感知、融合和决策等在内的三级数据处理场景。

飞步无人驾驶路线图

最后,核心“大脑”曝光后,飞步无人驾驶路线图也藏不住了。

飞步方面称,在深度学习加速器完成流片后,计划于2019年正式推出车规级感知融合芯片,并于2020年推出决策芯片

其中融合芯片,将成为全球第一款同时支持前融合和后融合的专用芯片。  

随着感知、融合和决策芯片的先后问世,2020年,飞步科技将实现凤凰(Phoenix)整套计算平台的初步搭建,支持L3/L4级别无人驾驶。

总算力超过80TOPs的同时,整体功耗从现在市场上主流的2000-3000W规模降到80W的先进水平,系统响应时间缩短到50ms以下。

此外,还提供完善的软件开发环境,开放支持多种智能算法。

这背后自然也蕴藏着飞步的平台和生态雄心。

一旦更多无人驾驶产业上下游玩家加入,车控主板等核心平台推出,在ASIL-D级别下快速进入L3/L4前装应用……

飞步毫无疑问将更快更广泛地在全球范围内推进芯片产品化和无人驾驶技术应用。

期待飞步神速~

本文分享自微信公众号 - 量子位(QbitAI)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-11-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 美国重金投资3D芯片项目!MIT+美独资公司攻关,旨在继续领先中国

    这个项目是美国“电子复兴计划”(ERI)中的绝对核心。ERI被外界称为美国第二次电子革命,承载着延续美国荣光的重任。

    量子位
  • 谁敢动英伟达的奶酪?AI芯片领域,这12家创业公司值得关注

    唐旭 编译整理 量子位 出品 | 公众号 QbitAI 还有谁? 还有谁家的AI产品背后的服务器上用的不是英伟达的芯片?还有谁家的芯片敢来老黄的地盘送死? 还有...

    量子位
  • 又一AI芯片浮出杭州西溪:阿里之后,Rokid自研芯片也曝光了

    阿里透露,这款芯片将运用于图像视频分析、机器学习等AI推理计算。按照设计,该芯片的性价比将是目前同类产品的40倍。

    量子位
  • 中芯芯片陈智维:国内芯片没有创新可言,但大家做的是从无到有

    2018年,对于国内芯片产业而言,是动荡的一年。这一年,有数家中小企业因行业的动荡而悄然陨落,也有无数人重新开始,一大片企业如雨后春笋般冲出重围,焕发新的生命力...

    镁客网
  • 重磅推荐:AI芯片产业生态梳理

    AI芯片作为产业核心,也是技术要求和附加值最高的环节,在AI产业链中的产业价值和战略地位远远大于应用层创新。腾讯发布的《中美两国人工智能产业发展全面解读》报告显...

    辉哥
  • 【AI芯片争夺战】谷歌TPU率队,颠覆3350亿美元的半导体行业

    【新智元导读】人工智能系统的加速正在从根本上重塑着每年创造了3350亿美元的半导体行业。计算机开始认识一切,从花草到人脸,从文本到声音,以及学会开车。统治了计算...

    新智元
  • Kafka 中使用 Avro 序列化框架(二):使用 Twitter 的 Bijection 类库实现 avro 的序列化与反序列化

    使用传统的 avro API 自定义序列化类和反序列化类比较麻烦,需要根据 schema 生成实体类,需要调用 avro 的 API 实现 对象到 byte[]...

    CoderJed
  • 这家足以毁灭人类的公司,320亿美元被孙正义收购

    您无需手握方向盘,这辆汽车可以自动巡航,并安全地把您送回家,这里不会发生交通事故,因为传感器会根据障碍物自动做出反应。

    挖数
  • 腾讯云批量计算型BS1云服务器配置CPU内存性能注意事项

    腾讯云批量型服务器具有最优单位核时性价比,适用于渲染、基因分析、晶体药学等短时频繁使用超大规模计算节点的计算密集型应用。腾讯云百科分享腾讯云批量计算型BS1云服...

    上云小秘书
  • 前端监测浏览器渲染帧率fps

    在前端性能优化中,尤其是动画绘制中,我们需要关注浏览器的渲染频率FPS(每秒传输帧数(Frames Per Second)),在Chrome浏览器上我们可以通过...

    伯爵

扫码关注云+社区

领取腾讯云代金券