博客 | AI 从业者都应该知道的实验数据集

网AI 科技评论按:数据集对于深度学习模型的重要性不言而喻,然而根据性质、类型、领域的不同,数据集往往散落在不同的资源平台里,急需人们做出整理。 fast.ai 近期将这些重要的数据集汇总到了一篇文章里,雷锋网 AI 科技评论把文章编译如下。

少了数据,我们的机器学习和深度学习模型什么也干不了。这么说吧,那些创建了数据集、让我们可以训练模型的人,都是我们的英雄,虽然这些人常常并没有得到足够的感谢。让人庆幸的是,那批最有价值的数据集后来成了「学术基准线」——被研究人员广泛引用,尤其在算法变化的对比上;不少名字则成为圈内外都耳熟能详的名称,如 MNIST、CIFAR 10 以及 Imagenet 等。

身为 fast.ai 的一员,我们自觉欠这些数据集的创建者一句真挚的感谢,所以我们决定,通过与 AWS 合作,把一些最重要的数据集集中整理在一处,数据集自身采用标准格式,存储服务器也是快速的、可靠的(请参阅下方的完整列表与链接)。如果您在研究中使用了这些数据集,我们希望您记得引用原始论文(我们已经在表单中提供引用链接);如果您将它们用作商业或教育项目的一部分,请考虑添加致谢文及数据集原链接。

我们之所以经常在教学中引用这些数据集,是因为它们就是学生们很有可能遇到的数据类型的绝佳例子,此外,学生可以将自己的工作与引用这些数据集的学术成果进行对比,从而取得进步。此外,我们也会使用 Kaggle Competitions 数据集,Kaggle 的 public leaderboards 允许学生在世界最好的数据集里测试自己的模型,不过 Kaggle 数据集并不会在本次表单中出现。

图像分类领域

1)MNIST

经典的小型(28x28 像素)灰度手写数字数据集,开发于 20 世纪 90 年代,主要用于测试当时最复杂的模型;到了今日,MNIST 数据集更多被视作深度学习的基础教材。fast.ai 版本的数据集舍弃了原始的特殊二进制格式,转而采用标准的 PNG 格式,以便在目前大多数代码库中作为正常的工作流使用;如果您只想使用与原始同样的单输入通道,只需在通道轴中选取单个切片即可。

引文:http://yann.lecun.com/exdb/publis/index.html#lecun-98

下载地址:https://s3.amazonaws.com/fast-ai-imageclas/mnist_png.tgz

2)CIFAR10

10 个类别,多达 60000 张的 32x32 像素彩色图像(50000 张训练图像和 10000 张测试图像),平均每种类别拥有 6000 张图像。广泛用于测试新算法的性能。fast.ai 版本的数据集舍弃了原始的特殊二进制格式,转而采用标准的 PNG 格式,以便在目前大多数代码库中作为正常的工作流使用。

引文:https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

下载地址:https://s3.amazonaws.com/fast-ai-imageclas/cifar10.tgz

3)CIFAR100

与 CIFAR-10 类似,区别在于 CIFAR-100 拥有 100 种类别,每个类别包含 600 张图像(500 张训练图像和 100 张测试图像),然后这 100 个类别又被划分为 20 个超类。因此,数据集里的每张图像自带一个「精细」标签(所属的类)和一个「粗略」标签(所属的超类)。

引文:https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

下载地址:https://s3.amazonaws.com/fast-ai-imageclas/cifar100.tgz

4)Caltech-UCSD Birds-200-2011

包含 200 种鸟类(主要为北美洲鸟类)照片的图像数据集,可用于图像识别工作。分类数量:200;图片数量:11,788;平均每张图片含有的标注数量:15 个局部位置,312 个二进制属性,1 个边框框。

引文:http://vis-www.cs.umass.edu/bcnn/

下载地址:https://s3.amazonaws.com/fast-ai-imageclas/CUB_200_2011.tgz

5)Caltech 101

包含 101 种物品类别的图像数据集,平均每个类别拥有 40—800 张图像,其中很大一部分类别的图像数量固为 50 张左右。每张图像的大小约为 300 x 200 像素。本数据集也可以用于目标检测定位。

引文:http://www.vision.caltech.edu/feifeili/Fei-Fei_GMBV04.pdf

下载地址:https://s3.amazonaws.com/fast-ai-imageclas/caltech_101.tar.gz

6)Oxford-IIIT Pet

包含 37 种宠物类别的图像数据集,每个类别约有 200 张图像。这些图像在比例、姿势以及光照方面有着丰富的变化。本数据集也可以用于目标检测定位。

引文:http://www.robots.ox.ac.uk/~vgg/publications/2012/parkhi12a/parkhi12a.pdf

下载地址:https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet.tgz

7)Oxford 102 Flowers

包含 102 种花类的图像数据集(主要是一些英国常见的花类),每个类别包含 40—258 张图像。这些图像在比例、姿势以及光照方面有着丰富的变化。

引文:http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.pdf

下载地址:https://s3.amazonaws.com/fast-ai-imageclas/oxford-102-flowers.tgz

8)Food-101

包含 101 种食品类别的图像数据集,共有 101,000 张图像,平均每个类别拥有 250 张测试图像和 750 张训练图像。训练图像未经过数据清洗。所有图像都已经重新进行了尺寸缩放,最大边长达到了 512 像素。

引文:https://pdfs.semanticscholar.org/8e3f/12804882b60ad5f59aad92755c5edb34860e.pdf

下载地址:https://s3.amazonaws.com/fast-ai-imageclas/food-101.tgz

9)Stanford cars

包含 196 种汽车类别的图像数据集,共有 16,185 张图像,分别为 8,144 张训练图像和 8,041 张测试图像,每个类别的图像类型比例基本上都是五五开。本数据集的类别主要基于汽车的牌子、车型以及年份进行划分。

引文:https://ai.stanford.edu/~jkrause/papers/3drr13.pdf

下载地址:https://s3.amazonaws.com/fast-ai-imageclas/stanford-cars.tgz

自然语言处理领域

1)IMDb Large Movie Review Dataset

用于情感二元分类的数据集,其中包含 25,000 条用于训练的电影评论和 25,000 条用于测试的电影评论,这些电影评论的特点是两极分化特别明显。另外数据集里也包含未标记的数据可供使用。

引文:http://ai.stanford.edu/~amaas/papers/wvSent_acl2011.pdf

下载地址:https://s3.amazonaws.com/fast-ai-nlp/imdb.tgz

2)Wikitext-103

超过 1 亿个语句的数据合集,全部从维基百科的 Good 与 Featured 文章中提炼出来。广泛用于语言建模,当中包括 fastai 库和 ULMFiT 算法中经常用到的预训练模型。

引文:https://arxiv.org/abs/1609.07843

下载地址:https://s3.amazonaws.com/fast-ai-nlp/wikitext-103.tgz

3)Wikitext-2

Wikitext-103 的子集,主要用于测试小型数据集的语言模型训练效果。

引文:https://arxiv.org/abs/1609.07843

下载地址:https://s3.amazonaws.com/fast-ai-nlp/wikitext-2.tgz

4)WMT 2015 French/English parallel texts

用于训练翻译模型的法语/英语平行文本,拥有超过 2000 万句法语与英语句子。本数据集由 Chris Callison-Burch 创建,他抓取了上百万个网页,然后通过一组简单的启发式算法将法语网址转换为英文网址,并默认这些文档之间互为译文。

引文:https://www.cis.upenn.edu/~ccb/publications/findings-of-the-wmt09-shared-tasks.pdf

下载地址:https://s3.amazonaws.com/fast-ai-nlp/giga-fren.tgz

5)AG News

496,835 条来自 AG 新闻语料库 4 大类别超过 2000 个新闻源的新闻文章,数据集仅仅援用了标题和描述字段。每个类别分别拥有 30,000 个训练样本及 1900 个测试样本。

引文:https://arxiv.org/abs/1509.01626

下载地址:https://s3.amazonaws.com/fast-ai-nlp/ag_news_csv.tgz

6)Amazon reviews - Full

34,686,770 条来自 6,643,669 名亚马逊用户针对 2,441,053 款产品的评论,数据集主要来源于斯坦福网络分析项目(SNAP)。数据集的每个类别分别包含 600,000 个训练样本和 130,000 个测试样本。

引文:https://arxiv.org/abs/1509.01626

下载地址:https://s3.amazonaws.com/fast-ai-nlp/amazon_review_full_csv.tgz

7)Amazon reviews - Polarity

34,686,770 条来自 6,643,669 名亚马逊用户针对 2,441,053 款产品的评论,数据集主要来源于斯坦福网络分析项目(SNAP)。该子集的每个情绪极性数据集分别包含 1,800,000 个训练样本和 200,000 个测试样本。

引文:https://arxiv.org/abs/1509.01626

下载地址:https://s3.amazonaws.com/fast-ai-nlp/amazon_review_polarity_csv.tgz

8)DBPedia ontology

来自 DBpedia 2014 的 14 个不重叠的分类的 40,000 个训练样本和 5,000 个测试样本。

引文:https://arxiv.org/abs/1509.01626

下载地址:https://s3.amazonaws.com/fast-ai-nlp/dbpedia_csv.tgz

9)Sogou news

2,909,551 篇来自 SogouCA 和 SogouCS 新闻语料库 5 个类别的新闻文章。每个类别分别包含 90,000 个训练样本和 12,000 个测试样本。这些汉字都已经转换成拼音。

引文:https://arxiv.org/abs/1509.01626

下载地址:https://s3.amazonaws.com/fast-ai-nlp/sogou_news_csv.tgz

10)Yahoo! Answers

来自雅虎 Yahoo! Answers Comprehensive Questions and Answers1.0 数据集的 10 个主要分类数据。每个类别分别包含 140,000 个训练样本和 5,000 个测试样本。

引文:https://arxiv.org/abs/1509.01626

下载地址:https://s3.amazonaws.com/fast-ai-nlp/yahoo_answers_csv.tgz

11)Yelp reviews - Full

来自 2015 年 Yelp Dataset Challenge 数据集的 1,569,264 个样本。每个评级分别包含 130,000 个训练样本和 10,000 个 测试样本。

引文:https://arxiv.org/abs/1509.01626

下载地址:https://s3.amazonaws.com/fast-ai-nlp/yelp_review_full_csv.tgz

12)Yelp reviews - Polarity

来自 2015 年 Yelp Dataset Challenge 数据集的 1,569,264 个样本。该子集中的不同极性分别包含 280,000 个训练样本和 19,000 个测试样本。

引文:https://arxiv.org/abs/1509.01626

下载地址:https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polarity_csv.tgz

目标检测定位

1)Camvid: Motion-based Segmentation and Recognition Dataset

700 张包含像素级别语义分割的图像分割数据集,每张图像都经过第二个人的检查和确认来确保数据的准确性。

引文:https://pdfs.semanticscholar.org/08f6/24f7ee5c3b05b1b604357fb1532241e208db.pdf

下载地址:https://s3.amazonaws.com/fast-ai-imagelocal/camvid.tgz

2)PASCAL Visual Object Classes (VOC)

用于类识别的标准图像数据集——这里同时提供了 2007 与 2012 版本。2012 年的版本拥有 20 个类别。训练数据的 11,530 张图像中包含了 27,450 个 ROI 注释对象和 6,929 个目标分割数据。

引文:http://host.robots.ox.ac.uk/pascal/VOC/pubs/everingham10.pdf

下载地址:https://s3.amazonaws.com/fast-ai-imagelocal/pascal-voc.tgz

COCO 数据集

目前最常用于图像检测定位的数据集应该要属 COCO 数据集(全称为 Common Objects in Context)。本文提供 2017 版 COCO 数据集的所有文件,另外附带由 fast.ai 创建的子集数据集。我们可以从 COCO 数据集下载页面(http://cocodataset.org/#download)获取每个 COCO 数据集的详情。fast.ai 创建的子集数据集包含五个选定类别的所有图像,这五个选定类别分别为:椅子、沙发、电视遥控、书籍和花瓶。

fast.ai 创建的子集数据集:https://s3.amazonaws.com/fast-ai-coco/coco_sample.tgz

训练图像数据集:https://s3.amazonaws.com/fast-ai-coco/train2017.zip

验证图像数据集:https://s3.amazonaws.com/fast-ai-coco/val2017.zip

测试图像数据集:https://s3.amazonaws.com/fast-ai-coco/test2017.zip

未经标注的图像数据集:https://s3.amazonaws.com/fast-ai-coco/unlabeled2017.zip

测试图像数据集详情:https://s3.amazonaws.com/fast-ai-coco/image_info_test2017.zip

未经标注的图像数据集详情:https://s3.amazonaws.com/fast-ai-coco/image_info_unlabeled2017.zip

训练/验证注释集:https://s3.amazonaws.com/fast-ai-coco/annotations_trainval2017.zip

主体训练/验证注释集:https://s3.amazonaws.com/fast-ai-coco/stuff_annotations_trainval2017.zip

全景训练/验证注释集:https://s3.amazonaws.com/fast-ai-coco/panoptic_annotations_trainval2017.zip

via fast.ai,雷锋网 AI 科技评论

原文发布于微信公众号 - AI研习社(okweiwu)

原文发表时间:2018-11-05

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏QQ大数据团队的专栏

神盾推荐——离线算法平台

1.4K6
来自专栏机器学习算法与理论

利用二维图像进行头部姿态估计

3D头部姿态估计(ubuntu操作系统,基于opencv3.2+Dlib19.4+python2.7)打开摄像头,可实现实时(realtime)姿态检测。 坐标...

5435
来自专栏数据科学学习手札

(数据科学学习手札13)K-medoids聚类算法原理简介&Python与R的实现

前几篇我们较为详细地介绍了K-means聚类法的实现方法和具体实战,这种方法虽然快速高效,是大规模数据聚类分析中首选的方法,但是它也有一些短板,比如在数据集中有...

4607
来自专栏机器之心

业界 | OpenAI提出新型神经网络:自动计算词对象,实现实体消岐

2897
来自专栏新智元

【重磅】百度开源分布式深度学习平台,挑战TensorFlow (教程)

【新智元导读】今天百度开源深度学习平台Paddle。业内人士纷纷点赞:Paddle代码简洁、设计干净,没有太多的abstraction,速度比Tensorflo...

9167
来自专栏Python中文社区

Kaggle搭积木式刷分大法: LB 0.11666(排名前15%)

專 欄 ❈本文作者:王勇,目前感兴趣项目商业分析、Python、机器学习、Kaggle。17年项目管理,通信业干了11年项目经理管合同交付,制造业干了6年项目...

20610
来自专栏数据派THU

独家 | 一文读懂如何用深度学习实现网络安全

本文简要介绍深度学习以及它支持的一些现有信息安全应用,并提出一个基于深度学习的TOR流量检测方案。

1202
来自专栏PPV课数据科学社区

R语言中的情感分析与机器学习

利用机器学习可以很方便的做情感分析。本篇文章将介绍在R语言中如何利用机器学习方法来做情感分析。在R语言中,由Timothy P.Jurka开发的情感分析以及更一...

3606
来自专栏思影科技

大话脑成像之十三:浅谈标准空间模板和空间变换

2845
来自专栏AI研习社

如何用PyTorch训练图像分类器

如果你刚刚开始使用PyTorch并想学习如何进行基本的图像分类,那么你可以参考本教程。它将介绍如何组织训练数据,使用预训练神经网络训练模型,然后预测其他图像。

1122

扫码关注云+社区