亚马逊团队改进Alexa语音助手自动选择技能,错误率减少了12%

亚马逊的Alexa助手拥有超过50000个技能,如果你不确定从哪里开始,那么你也很难发现新的用途,在博客文章中,亚马逊Alexa AI部门的数据科学家Young-Bum Kim详细介绍了一个新的机器学习系统,该系统自动选择最佳技能来处理特定请求,其结果显著减少了错误。

最近对其进行的修改,将在本周于布鲁塞尔举行的2018年自然语言处理经验方法会议上提出。

正如Kim解释的那样,该模型包括两个神经网络,或模拟大脑中神经元行为的数学函数层。

第一个被称为“短名单”,产生可能适合给定请求的候选技能列表,同时考虑已经与请求者的Alexa帐户相关联的技能(Kim指出,链接是偏好的强大推论)。同时,“关注机制”动态地为每个链接技能赋予权重,修改其中任何一个将进入候选名单的概率。

第二个使用更详细的信息,包括技能开发人员是否指出他们的技能能够在元数据中执行哪些操作,来选择这些技能。

此前,Alexa研究人员对端到端的短网络进行了训练,网络的每个组成部分都是根据它对输出准确性的贡献来评估的。但是,新改进的AI模型还会在确定概率时考虑预期的技能,即在用户请求某事时调用的链接技能。Kim写道,因此当用户打算使用时,网络现在可以更可靠地选择链接技能。

为了测试改进的AI系统的鲁棒性,Alexa AI团队测试了三个不同的版本,这两个版本使用两个不同的函数来生成应用于链接技能的权重:softmax,其生成的值为0到1之间必须总和为1的权重;sigmoid,它也产生从0到1的权重,但对它们的总和没有限制(以前版本候选名单的神经网络专门使用softmax)。

Kim写道,这三个表现最佳的模型在制作三种候选技能的候选名单时,将错误率降低了12%。

亚马逊对AI的使用不仅限于技能选择。它的上下文遗留模型允许Alexa理解多轮话语,本质上是明确代词参考的后续请求(例如,“Alexa,阿黛尔的第一张专辑是什么?”“Alexa,播放它。”)。一个单独的AI系统允许亚马逊的Echo扬声器识别多达十个不同的用户语音。此外,早在去年11月,亚马逊的Alexa团队表示,它已经开始分析用户的声音,以识别情绪或情绪状态。

这只是冰山一角。8月,亚马逊的Alexa机器学习团队在关键语音识别模型脱机方面取得了进展。在9月举办的硬件活动中,公司展示了Hunches,它主动推荐基于连接设备和传感器数据的行动,以及耳语模式。

原文发布于微信公众号 - ATYUN订阅号(atyun_com)

原文发表时间:2018-11-01

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

阿里妈妈首次公开新一代智能广告检索模型,重新定义传统搜索框架

39150
来自专栏应兆康的专栏

14. 错误分析:查看开发集样本来评估ideas

当你使用猫咪APP的时候,注意到一些被错误,识别成猫咪的狗样本。一些狗长的像猫! 于是一个团队成员建议和第三方软件进行合作,使系统可以更好的处理狗样本。这些改...

38280
来自专栏专知

微软研究院开源项目TextWorld:可用于强化学习训练的文本游戏

【导读】可以说,对话系统和自然语言处理(NLP)是现代人工智能(AI)中应用最广泛的部分。 尽管NLP研究不断取得进展,但和人相比,今天的大多数对话系统仍然相当...

8310
来自专栏AI科技评论

业界 | 「压缩」会是机器学习的下一个杀手级应用吗?

机器学习的研究正进行的如火如荼,各种新方法层出不穷。尽管这样,还有一个问题摆在面前,研究这些算法对于现实有什么用。特别是当讨论起机器学习在手机和其他设备上的应用...

8220
来自专栏美团技术团队

【沙龙干货】主题四:美团外卖中的单量预估及列表优化

分享内容 ---- 相对于团购,外卖有三个特点:移动化、本地化、场景化。 移动化,从2011年开始到2015年移动战略是逐渐上升的。对应外卖2014年移动占比一...

35430
来自专栏机器之心

学界 | 让好奇心驱动人工智能:UC Berkeley提出自监督预测算法

选自arXiv 作者:Deepak Pathak等 机器之心编译 参与:李泽南 无监督学习一直被认为是让人工智能在真实世界中有效工作的研究方向,此前大多数研究都...

368110
来自专栏AI科技评论

动态 | 谷歌也发布了Web前端机器学习库,就叫deeplearn.js

AI 科技评论按:在人工智能时代,不管是音箱、手机、汽车、app,自家产品没有用上深度学习都不好意思跟别人打招呼;另外,谷歌和 Facebook 都分别在 Te...

36360
来自专栏杨熹的专栏

强化学习第4课:这些都可以抽象为一个决策过程

这个过程有两步,首先你的代理会观察环境的一些特质,有时是传感器感知到的,有些是输入的用户特征。 然后代理会选择一个行为,将这个行为反馈给环境。 之后代理不仅...

9210
来自专栏WOLFRAM

还记得昨天的问题吗?今天就让我们绘制一下三维的分布图...

13420
来自专栏机器之心

学界 | 谷歌提出协同机器学习:通过分散的手机更新同一个云端模型

选自Google Blog 作者:Brendan McMahan、Daniel Ramage 机器之心编译 参与:微胖、韩天哲 标准的机器学习方法要求在一个机器...

312100

扫码关注云+社区

领取腾讯云代金券