首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Go语言字符串高效拼接(三)

Go语言字符串高效拼接(三)

作者头像
飞雪无情
发布2018-12-12 10:02:27
9790
发布2018-12-12 10:02:27
举报

在上一篇关于字符串拼接的文章Go语言字符串高效拼接(二) 中,我们终于为Builder拼接正名了,果真不负众望,尤其是拼接的字符串越来越多时,其性能的优越性更加明显。

在上一篇的结尾中,我留下悬念说其实还有优化的空间,这就是今天这篇文章,字符串拼接系列的第三篇,也是字符串拼接的最后一篇产生的原因,今天我们就看下如何再提升Builder的性能。关于第一篇字符串高效拼接的文章可点击 Go语言字符串高效拼接(一) 查看。

Builder 慢在哪

既然要优化Builder拼接,那么我们起码知道他慢在哪,我们继续使用我们上篇文章的测试用例,运行看下性能。

Builder10-8     5000000     258 ns/op       480 B/op        4 allocs/op
Builder100-8    1000000     2012 ns/op      6752 B/op       8 allocs/op
Builder1000-8   100000      21016 ns/op     96224 B/op      16 allocs/op
Builder10000-8  10000       195098 ns/op    1120226 B/op    25 allocs/op

针对既然要优化Builder拼接,采取了10、100、1000、10000四种不同数量的字符串进行拼接测试。我们发现每次操作都有不同次数的内存分配,内存分配越多,越慢,如果引起GC,就更慢了,首先我们先优化这个,减少内存分配的次数。

内存分配优化

通过cpuprofile,查看生成的火焰图可以得知,runtime.growslice函数会被频繁的调用,并且时间占比也比较长。我们查看Builder.WriteString的源代码:

func (b *Builder) WriteString(s string) (int, error) {
	b.copyCheck()
	b.buf = append(b.buf, s...)
	return len(s), nil
}

可以肯定是append方法触发了runtime.growslice,因为b.buf的容量cap不足,所以需要调用runtime.growslice扩充b.buf的容量,然后才可以追加新的元素s...。扩容容量自然会涉及到内存的分配,而且追加的内容越多,内容分配的次数越多,这和我们上面性能测试的数据是一样的。

既然问题的原因找到了,那么我们就可以优化了,核心手段就是减少runtime.growslice调用,甚至不调用。照着这个思路的话,我们就要提前为b.buf分配好容量cap。幸好Builder为我们提供了扩充容量的方法Grow,我们在进行WriteString之前,先通过Grow方法,扩充好容量即可。

现在开始改造我们的StringBuilder函数。

//blog:www.flysnow.org
//微信公众号:flysnow_org
func StringBuilder(p []string,cap int) string {
	var b strings.Builder
	l:=len(p)
	b.Grow(cap)
	for i:=0;i<l;i++{
		b.WriteString(p[i])
	}
	return b.String()
}

增加一个参数cap,让使用者告诉我们需要的容量大小。Grow方法的实现非常简单,就是一个通过make函数,扩充b.buf大小,然后再拷贝b.buf的过程。

func (b *Builder) grow(n int) {
	buf := make([]byte, len(b.buf), 2*cap(b.buf)+n)
	copy(buf, b.buf)
	b.buf = buf
}

那么现在我们的性能测试用例变成如下:

func BenchmarkStringBuilder10(b *testing.B) {
	p:= initStrings(10)
	cap:=10*len(BLOG)
	b.ResetTimer()
	for i:=0;i<b.N;i++{
		StringBuilder(p,cap)
	}
}

func BenchmarkStringBuilder1000(b *testing.B) {
	p:= initStrings(1000)
	cap:=1000*len(BLOG)
	b.ResetTimer()
	for i:=0;i<b.N;i++{
		StringBuilder(p,cap)
	}
}

为了说明情况和简短代码,这里只有10和1000个元素的用例,其他类似。为了把性能优化到极致,我一次性把需要的容量分配足够。现在我们再运行性能(Benchmark)测试代码。

Builder10-8     10000000    123 ns/op       352 B/op    1 allocs/op
Builder100-8    2000000     898 ns/op       2688 B/op   1 allocs/op
Builder1000-8   200000      7729 ns/op      24576 B/op  1 allocs/op
Builder10000-8  20000       78678 ns/op     237568 B/op 1 allocs/op

性能足足翻了1倍多,只有1次内存分配,每次操作占用的内存也减少了一半多,降低了GC。

小结

这次优化,到了这里,算是结束了,写出来后,大家也会觉得不难,其背后的原理也非常情况,就是预先分配内存,减少append过程中的内存重新分配和数据拷贝,这样我们就可以提升很多的性能。所以对于可以预见的长度的切,都可以提前申请申请好内存。

字符串拼接的系列,到这里结束了,一共三个系列,希望对大家所有帮助。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018年11月11日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Builder 慢在哪
  • 内存分配优化
  • 小结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档