抱歉,你查看的文章不存在

【干货分享】177页鲁棒机器学习教程(附Slides全文下载)

【导读】本文为大家整理了俄勒冈州立大学的杰出教授Thomas G.Dietterich的鲁棒机器学习教程,具体内容如下。

课程介绍:

这个短期课程讨论了从有监督的机器学习中获得可靠决策的问题。它试图总结关于我们如何创建机器学习分类器的当前知识,这些分类器在进行预测时可以保证预测的正确性和高概率性。这些分类器拒绝测试查询,因为它们对这些查询没有足够的信心。本课程由四节课组成,每节课以最近最新的一些论文为中心,但也包括其他出版资料。

  • 第1讲:校准概率。本节课讨论如何从监督分类器获得校准概率。这对于做出拒绝决定很有用,对于cost-sensitive的分类,处理类不平衡以及作为更大的AI系统的组件也是有用的。
  • 第2讲:带有拒绝选项的分类。为了正确地做出拒绝决策,我们不需要获得经过校准的概率。这节课讨论了设置拒绝阈值的方法,该阈值提供了准确性保证。这包括标准的阈值法和保角预测法。
  • 第3讲:开放类别检测。前两讲仅考虑了具有iid训练数据的封闭世界的情况。在本节课中,我们讨论了检测属于不存在于训练数据中的类的测试查询的问题。
  • 第4讲:异常检测。大多数开放类别方法都使用异常检测方法来进行新奇类查询。本节课讨论了八种异常检测算法的基准研究。然后介绍由Alan Fern,Md.Amran Siddiqui和我开发的罕见模式异常检测理论,该理论给出了异常检测方法的PAC式理论。

我无法在这些演讲中涵盖所有相关的文献。如果您能给我发相关文献的邮件,我将不胜感激。同样的,如果你在这些报告中看到错误,请给我发邮件,以便我可以及时更正。

Tom Dietterich,tgd@cs.orst.edu

关注专知公众号(扫描文章底部二维码,或者点击上方蓝色专知)

  • 后台回复“RAI” 可以获取课程Slides下载链接~

附slides全文:

-END-

原文发布于微信公众号 - 专知(Quan_Zhuanzhi)

原文发表时间:2018-11-14

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

编辑于

专知

880 篇文章344 人订阅

相关文章

来自专栏机器之心

学界 | 谷歌《Cell》论文:使用深度学习,直接对细胞影像生成荧光标记

选自Google Research 机器之心编译 很多常用的细胞标记方法有明显的缺点,包括不一致性、空间重叠、物理干预等。近日,谷歌利用深度学习方法即「in s...

34380
来自专栏CDA数据分析师

译 | 在R中使用quadprog包求解二次规划

本文由CDA作者库成员HarryZhu翻译,并授权发布。 CDA作者库凝聚原创力量,只做更有价值的分享。 概述 本文将探究一个被称为二次规划的优化问题,这是一种...

33290
来自专栏美团技术团队

【AI in 美团】深度学习在美团搜索广告排序的应用实践

AI(人工智能)技术已经广泛应用于美团的众多业务,从美团App到大众点评App,从外卖到打车出行,从旅游到婚庆亲子,美团数百名最优秀的算法工程师正致力于将AI技...

20330
来自专栏腾讯开源的专栏

【开源公告】腾讯 AI Lab 正式开源业内最大规模多标签图像数据集

2018年10月17日,深圳 - 今日,腾讯AI Lab宣布正式开源“Tencent ML-Images”项目,该项目由多标签图像数据集ML-Images,以...

11320
来自专栏大数据智能实战

基于Tensorflow的VCTK语音识别例子测试

语音识别是深度学习早先攻克的几个领域之一。传统的基于HMM等的语音识别精度一直比较受限。但是深度学习还是给语音识别的精度带来了一个飞跃性的提高。本文在网上找了段...

60980
来自专栏深度学习之tensorflow实战篇

算法岗位做数据挖掘大多都是抽特征跑跑现成模型”

这句话,说起来很简单,看起来也很容易,但真的是这样吗? 我列举几点,扩展一下上面这句话: 1、label符合业务场景吗?label准确吗?能够校准吗?放在哪张表...

34990
来自专栏WeTest质量开放平台团队的专栏

机器学习在启动耗时测试中的应用及模型调优(一)

启动耗时自动化方案在关键帧识别时,常规的图像对比准确率很低。本文详细介绍了采用scikit-learn图片分类算法在启动耗时应用下的模型调优过程。

19430
来自专栏新智元

AutoML又一利器来了,谷歌宣布开源AdaNet(附教程)

今天,谷歌宣布开源AdaNet,这是一个轻量级的基于TensorFlow的框架,可以在最少的专家干预下自动学习高质量的模型。

31650
来自专栏SeanCheney的专栏

《Scikit-Learn与TensorFlow机器学习实用指南》 第16章 强化学习(下)

在二十世纪初,数学家 Andrey Markov 研究了没有记忆的随机过程,称为马尔可夫链。这样的过程具有固定数量的状态,并且在每个步骤中随机地从一个状态演化到...

11020
来自专栏数据派THU

带你用深度学习虚拟机进行文本迁移学习(附代码)

本文讲述了现代机器学习的模型,主要由微软数据科学家Anusua Trivedi和数据科学家经理Wee Hyong Tok共同撰写。

16140

扫码关注云+社区

领取腾讯云代金券