在Java Web中使用Spark MLlib训练的模型

PMML是一种通用的配置文件,只要遵循标准的配置文件,就可以在Spark中训练机器学习模型,然后再web接口端去使用。目前应用最广的就是基于Jpmml来加载模型在javaweb中应用,这样就可以实现跨平台的机器学习应用了。

训练模型

首先在spark MLlib中使用mllib包下的逻辑回归训练模型:

import org.apache.spark.mllib.classification.{LogisticRegressionModel, LogisticRegressionWithLBFGS}
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
    
val training = spark.sparkContext
  .parallelize(Seq("0,1 2 3 1", "1,2 4 1 5", "0,7 8 3 6", "1,2 5 6 9").map( line => LabeledPoint.parse(line)))

// Run training algorithm to build the model
val model = new LogisticRegressionWithLBFGS()
  .setNumClasses(2)
  .run(training)

val test = spark.sparkContext
  .parallelize(Seq("0,1 2 3 1").map( line => LabeledPoint.parse(line)))


// Compute raw scores on the test set.
val predictionAndLabels = test.map { case LabeledPoint(label, features) =>
  val prediction = model.predict(features)
  (prediction, label)
}

// Get evaluation metrics.
val metrics = new MulticlassMetrics(predictionAndLabels)
val accuracy = metrics.accuracy
println(s"Accuracy = $accuracy")

// Save and load model
//    model.save(spark.sparkContext, "target/tmp/scalaLogisticRegressionWithLBFGSModel")
//    val sameModel = LogisticRegressionModel.load(spark.sparkContext,"target/tmp/scalaLogisticRegressionWithLBFGSModel")

model.toPMML(spark.sparkContext, "/tmp/xhl/data/test2")

训练得到的模型保存到hdfs。

PMML模型文件

模型下载到本地,重新命名为xml。 可以看到默认四个特征分别叫做feild_0field_1...目标为target

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<PMML version="4.2" xmlns="http://www.dmg.org/PMML-4_2">
    <Header description="logistic regression">
        <Application name="Apache Spark MLlib" version="2.2.0"/>
        <Timestamp>2018-11-15T10:22:25</Timestamp>
    </Header>
    <DataDictionary numberOfFields="5">
        <DataField name="field_0" optype="continuous" dataType="double"/>
        <DataField name="field_1" optype="continuous" dataType="double"/>
        <DataField name="field_2" optype="continuous" dataType="double"/>
        <DataField name="field_3" optype="continuous" dataType="double"/>
        <DataField name="target" optype="categorical" dataType="string"/>
    </DataDictionary>
    <RegressionModel modelName="logistic regression" functionName="classification" normalizationMethod="logit">
        <MiningSchema>
            <MiningField name="field_0" usageType="active"/>
            <MiningField name="field_1" usageType="active"/>
            <MiningField name="field_2" usageType="active"/>
            <MiningField name="field_3" usageType="active"/>
            <MiningField name="target" usageType="target"/>
        </MiningSchema>
        <RegressionTable intercept="0.0" targetCategory="1">
            <NumericPredictor name="field_0" coefficient="-5.552297758753701"/>
            <NumericPredictor name="field_1" coefficient="-1.4863480719075117"/>
            <NumericPredictor name="field_2" coefficient="-5.7232298850417855"/>
            <NumericPredictor name="field_3" coefficient="8.134075057437393"/>
        </RegressionTable>
        <RegressionTable intercept="-0.0" targetCategory="0"/>
    </RegressionModel>
</PMML>

接口使用

在接口的web工程中引入maven jar:

<!-- https://mvnrepository.com/artifact/org.jpmml/pmml-evaluator -->
<dependency>
    <groupId>org.jpmml</groupId>
    <artifactId>pmml-evaluator</artifactId>
    <version>1.4.3</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.jpmml/pmml-evaluator-extension -->
<dependency>
    <groupId>org.jpmml</groupId>
    <artifactId>pmml-evaluator-extension</artifactId>
    <version>1.4.3</version>
</dependency>

接口代码中直接读取pmml,使用模型进行预测:

package soundsystem;

import org.dmg.pmml.FieldName;
import org.dmg.pmml.PMML;
import org.jpmml.evaluator.*;

import java.io.FileInputStream;
import java.io.InputStream;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;

public class PMMLDemo2 {
    private Evaluator loadPmml(){
        PMML pmml = new PMML();
        try(InputStream inputStream = new FileInputStream("/Users/xingoo/Desktop/test2.xml")){
            pmml = org.jpmml.model.PMMLUtil.unmarshal(inputStream);
        } catch (Exception e) {
            e.printStackTrace();
        }
        ModelEvaluatorFactory modelEvaluatorFactory = ModelEvaluatorFactory.newInstance();
        return modelEvaluatorFactory.newModelEvaluator(pmml);
    }
    private Object predict(Evaluator evaluator,int a, int b, int c, int d) {
        Map<String, Integer> data = new HashMap<String, Integer>();
        data.put("field_0", a);
        data.put("field_1", b);
        data.put("field_2", c);
        data.put("field_3", d);
        List<InputField> inputFields = evaluator.getInputFields();
        //过模型的原始特征,从画像中获取数据,作为模型输入
        Map<FieldName, FieldValue> arguments = new LinkedHashMap<FieldName, FieldValue>();
        for (InputField inputField : inputFields) {
            FieldName inputFieldName = inputField.getName();
            Object rawValue = data.get(inputFieldName.getValue());
            FieldValue inputFieldValue = inputField.prepare(rawValue);
            arguments.put(inputFieldName, inputFieldValue);
        }

        Map<FieldName, ?> results = evaluator.evaluate(arguments);

        List<TargetField> targetFields = evaluator.getTargetFields();
        TargetField targetField = targetFields.get(0);
        FieldName targetFieldName = targetField.getName();
        ProbabilityDistribution target = (ProbabilityDistribution) results.get(targetFieldName);
        System.out.println(a + " " + b + " " + c + " " + d + ":" + target);
        return target;
    }
    public static void main(String args[]){
        PMMLDemo2 demo = new PMMLDemo2();
        Evaluator model = demo.loadPmml();
        demo.predict(model,2,5,6,8);
        demo.predict(model,7,9,3,6);
        demo.predict(model,1,2,3,1);
        demo.predict(model,2,4,1,5);
    }
}

得到输出内容:

2 5 6 8:ProbabilityDistribution{result=1, probability_entries=[1=0.9999949538769296, 0=5.046123070395758E-6]}
7 9 3 6:ProbabilityDistribution{result=0, probability_entries=[1=1.1216598160542013E-9, 0=0.9999999988783402]}
1 2 3 1:ProbabilityDistribution{result=0, probability_entries=[1=2.363331367481431E-8, 0=0.9999999763666864]}
2 4 1 5:ProbabilityDistribution{result=1, probability_entries=[1=0.9999999831203591, 0=1.6879640907241367E-8]}

其中result为LR最终的结果,概率为二分类的概率。

参考资料

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏python3

python语句-for

732
来自专栏ascii0x03的安全笔记

【C】用C语言提取bmp图片像素,并进行K-means聚类分析——容易遇到的问题

关于bmp图片的格式,网上有很多文章,具体可以参考百度百科,也有例子程序。这里只提要注意的问题。 (1)结构体定义问题:首先按照百度百科介绍的定义了结构体,但是...

6546
来自专栏数据结构与算法

cf550D. Regular Bridge(构造)

一篇写的非常好的博客:http://www.cnblogs.com/mangoyang/p/9302269.html

771
来自专栏图形学与OpenGL

机械版CG 实验4 裁剪

了解二维图形裁剪的原理(点的裁剪、直线的裁剪、多边形的裁剪),利用VC+OpenGL实现直线的裁剪算法。

1771
来自专栏Jack-Cui

Day4、Python

题目     一个数如果恰好等于它的因子之和,这个数就成为“完数”。例如6=1+2+3。编程找出1000以内的所有完数。 程序分析     完全数(...

2460
来自专栏小樱的经验随笔

Vijos P1116 一元三次方程求解【多解,暴力,二分】

一元三次方程求解 描述 有形如:ax^3+bx^2+cx+d=0 这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三...

36512
来自专栏章鱼的慢慢技术路

Direct3D 11 Tutorial 7:Texture Mapping and Constant Buffers_Direct3D 11 教程7:纹理映射和常量缓冲区

在上一个教程中,我们为项目引入了照明。 现在我们将通过向我们的立方体添加纹理来构建它。 此外,我们将介绍常量缓冲区的概念,并解释如何使用缓冲区通过最小化带宽使用...

974
来自专栏数据科学与人工智能

【Python环境】Python数据分析入门

本文来分享一下如何通过Python来开始数据分析。 具体内容如下: 数据导入 导入本地的或者web端的CSV文件; 数据变换; 数据统计描述; 假设检验 单样本...

29210
来自专栏深度学习与计算机视觉

如何在Markdown中写公式

Markdown是一种可以使用普通文本编辑器编写的标记语言,通过简单的标记语法,它可以使普通文本内容具有一定的格式。 在很多主流的博客网站,github等地...

2128
来自专栏专知

【附源码】TensorFlow动态图(Eager模式)的那些神坑

导读:TensorFlow的动态图(Eager模式)为TensorFlow提供了Pythonic的API,让开发者可以像使用PyTorch一样使用TensorF...

972

扫码关注云+社区

领取腾讯云代金券