专栏首页xingoo, 一个梦想做发明家的程序员在Java Web中使用Spark MLlib训练的模型

在Java Web中使用Spark MLlib训练的模型

PMML是一种通用的配置文件,只要遵循标准的配置文件,就可以在Spark中训练机器学习模型,然后再web接口端去使用。目前应用最广的就是基于Jpmml来加载模型在javaweb中应用,这样就可以实现跨平台的机器学习应用了。

训练模型

首先在spark MLlib中使用mllib包下的逻辑回归训练模型:

import org.apache.spark.mllib.classification.{LogisticRegressionModel, LogisticRegressionWithLBFGS}
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
    
val training = spark.sparkContext
  .parallelize(Seq("0,1 2 3 1", "1,2 4 1 5", "0,7 8 3 6", "1,2 5 6 9").map( line => LabeledPoint.parse(line)))

// Run training algorithm to build the model
val model = new LogisticRegressionWithLBFGS()
  .setNumClasses(2)
  .run(training)

val test = spark.sparkContext
  .parallelize(Seq("0,1 2 3 1").map( line => LabeledPoint.parse(line)))


// Compute raw scores on the test set.
val predictionAndLabels = test.map { case LabeledPoint(label, features) =>
  val prediction = model.predict(features)
  (prediction, label)
}

// Get evaluation metrics.
val metrics = new MulticlassMetrics(predictionAndLabels)
val accuracy = metrics.accuracy
println(s"Accuracy = $accuracy")

// Save and load model
//    model.save(spark.sparkContext, "target/tmp/scalaLogisticRegressionWithLBFGSModel")
//    val sameModel = LogisticRegressionModel.load(spark.sparkContext,"target/tmp/scalaLogisticRegressionWithLBFGSModel")

model.toPMML(spark.sparkContext, "/tmp/xhl/data/test2")

训练得到的模型保存到hdfs。

PMML模型文件

模型下载到本地,重新命名为xml。 可以看到默认四个特征分别叫做feild_0field_1...目标为target

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<PMML version="4.2" xmlns="http://www.dmg.org/PMML-4_2">
    <Header description="logistic regression">
        <Application name="Apache Spark MLlib" version="2.2.0"/>
        <Timestamp>2018-11-15T10:22:25</Timestamp>
    </Header>
    <DataDictionary numberOfFields="5">
        <DataField name="field_0" optype="continuous" dataType="double"/>
        <DataField name="field_1" optype="continuous" dataType="double"/>
        <DataField name="field_2" optype="continuous" dataType="double"/>
        <DataField name="field_3" optype="continuous" dataType="double"/>
        <DataField name="target" optype="categorical" dataType="string"/>
    </DataDictionary>
    <RegressionModel modelName="logistic regression" functionName="classification" normalizationMethod="logit">
        <MiningSchema>
            <MiningField name="field_0" usageType="active"/>
            <MiningField name="field_1" usageType="active"/>
            <MiningField name="field_2" usageType="active"/>
            <MiningField name="field_3" usageType="active"/>
            <MiningField name="target" usageType="target"/>
        </MiningSchema>
        <RegressionTable intercept="0.0" targetCategory="1">
            <NumericPredictor name="field_0" coefficient="-5.552297758753701"/>
            <NumericPredictor name="field_1" coefficient="-1.4863480719075117"/>
            <NumericPredictor name="field_2" coefficient="-5.7232298850417855"/>
            <NumericPredictor name="field_3" coefficient="8.134075057437393"/>
        </RegressionTable>
        <RegressionTable intercept="-0.0" targetCategory="0"/>
    </RegressionModel>
</PMML>

接口使用

在接口的web工程中引入maven jar:

<!-- https://mvnrepository.com/artifact/org.jpmml/pmml-evaluator -->
<dependency>
    <groupId>org.jpmml</groupId>
    <artifactId>pmml-evaluator</artifactId>
    <version>1.4.3</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.jpmml/pmml-evaluator-extension -->
<dependency>
    <groupId>org.jpmml</groupId>
    <artifactId>pmml-evaluator-extension</artifactId>
    <version>1.4.3</version>
</dependency>

接口代码中直接读取pmml,使用模型进行预测:

package soundsystem;

import org.dmg.pmml.FieldName;
import org.dmg.pmml.PMML;
import org.jpmml.evaluator.*;

import java.io.FileInputStream;
import java.io.InputStream;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;

public class PMMLDemo2 {
    private Evaluator loadPmml(){
        PMML pmml = new PMML();
        try(InputStream inputStream = new FileInputStream("/Users/xingoo/Desktop/test2.xml")){
            pmml = org.jpmml.model.PMMLUtil.unmarshal(inputStream);
        } catch (Exception e) {
            e.printStackTrace();
        }
        ModelEvaluatorFactory modelEvaluatorFactory = ModelEvaluatorFactory.newInstance();
        return modelEvaluatorFactory.newModelEvaluator(pmml);
    }
    private Object predict(Evaluator evaluator,int a, int b, int c, int d) {
        Map<String, Integer> data = new HashMap<String, Integer>();
        data.put("field_0", a);
        data.put("field_1", b);
        data.put("field_2", c);
        data.put("field_3", d);
        List<InputField> inputFields = evaluator.getInputFields();
        //过模型的原始特征,从画像中获取数据,作为模型输入
        Map<FieldName, FieldValue> arguments = new LinkedHashMap<FieldName, FieldValue>();
        for (InputField inputField : inputFields) {
            FieldName inputFieldName = inputField.getName();
            Object rawValue = data.get(inputFieldName.getValue());
            FieldValue inputFieldValue = inputField.prepare(rawValue);
            arguments.put(inputFieldName, inputFieldValue);
        }

        Map<FieldName, ?> results = evaluator.evaluate(arguments);

        List<TargetField> targetFields = evaluator.getTargetFields();
        TargetField targetField = targetFields.get(0);
        FieldName targetFieldName = targetField.getName();
        ProbabilityDistribution target = (ProbabilityDistribution) results.get(targetFieldName);
        System.out.println(a + " " + b + " " + c + " " + d + ":" + target);
        return target;
    }
    public static void main(String args[]){
        PMMLDemo2 demo = new PMMLDemo2();
        Evaluator model = demo.loadPmml();
        demo.predict(model,2,5,6,8);
        demo.predict(model,7,9,3,6);
        demo.predict(model,1,2,3,1);
        demo.predict(model,2,4,1,5);
    }
}

得到输出内容:

2 5 6 8:ProbabilityDistribution{result=1, probability_entries=[1=0.9999949538769296, 0=5.046123070395758E-6]}
7 9 3 6:ProbabilityDistribution{result=0, probability_entries=[1=1.1216598160542013E-9, 0=0.9999999988783402]}
1 2 3 1:ProbabilityDistribution{result=0, probability_entries=[1=2.363331367481431E-8, 0=0.9999999763666864]}
2 4 1 5:ProbabilityDistribution{result=1, probability_entries=[1=0.9999999831203591, 0=1.6879640907241367E-8]}

其中result为LR最终的结果,概率为二分类的概率。

参考资料

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 基于Spark的机器学习实践 (二) - 初识MLlib

    MLlib是Spark的机器学习(ML)库。 其目标是使实用的机器学习可扩展且简单。 从较高的层面来说,它提供了以下工具:

    JavaEdge
  • Apache Spark 2.0预览:机器学习模型持久性

    以上所有应用场景在模型持久性、保存和加载模型的能力方面都更为容易。随着Apache Spark 2.0即将发布,Spark的机器学习库MLlib将在DataFr...

    人工智能资讯小编
  • 如何在Java应用里集成Spark MLlib训练好的模型做预测

    昨天媛媛说,你是不是很久没写博客了。我说上一篇1.26号,昨天3.26号,刚好两个月,心中也略微有些愧疚。今天正好有个好朋友问,怎么在Java应用里集成Spar...

    用户2936994
  • 深入理解XGBoost:分布式实现

    本文将重点介绍XGBoost基于Spark平台Scala版本的实现,带领大家逐步完成特征提取、变换和选择、XGBoost模型训练、Pipelines、模型选择。

    Coggle数据科学
  • 用Spark学习FP Tree算法和PrefixSpan算法

        在FP Tree算法原理总结和PrefixSpan算法原理总结中,我们对FP Tree和PrefixSpan这两种关联算法的原理做了总结,这里就从实践的...

    刘建平Pinard
  • MLlib中的Random Forests和Boosting

    用户1737318
  • MLlib中的随机森林和提升方法

    本帖是与来自于Origami Logic 的Manish Amd共同撰写的。

    人工智能资讯小编
  • 从Spark MLlib到美图机器学习框架实践

    在深入介绍 Spark MLlib 之前先了解机器学习,根据维基百科的介绍,机器学习有下面几种定义:

    美图数据技术团队
  • 从Spark MLlib到美图机器学习框架实践

    感谢阅读「美图数据技术团队」的第 23 篇原创文章,关注我们持续获取美图最新数据技术动态。

    美图数据技术团队

扫码关注云+社区

领取腾讯云代金券