首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >没练过这个项目,怎么做AI工程师?

没练过这个项目,怎么做AI工程师?

作者头像
AI科技大本营
发布2018-12-17 16:23:25
3400
发布2018-12-17 16:23:25
举报

从年初起,几家国际大厂的开发者大会,无论是微软Build、Facebook F8还是稍后的Google I/O,莫不把“AI优先”的大旗扯上云霄。

如果这一波AI大潮只是空喊几句口号,空提几个战略,空有几家炙手可热的创业公司,那当然成不了什么大气候。但风浪之下,我们看到的却是,Google一线的各大业务纷纷改用深度学习,落伍移动时代的微软则已拉起一支近万人的AI队伍。而国内一线大厂的情况,更是把AI牢牢把握住,试图再创高峰。

今天本文将分享一篇AI入门实战的项目经验分享,手把手带你进入AI的世界,让你消除对AI技术壁垒过高的恐惧~

【AI项目实战】多标签图像分类竞赛小试牛刀

初次拿到这个题目,想了想做过了猫狗大战这样的二分类,也做过cifar-10这样的多分类,类似本次比赛的题目多标签图像分类的确没有尝试过。6941个标签,每张图片可能没有标签也可能存在6941个标签,即各个标签之间是不存在互斥关系的,所以最终分类的损失函数不能用softmax而必须要用sigmoid。然后把分类层预测6941个神经元,每个神经元用sigmoid函数返回是否存在某个标签即可。

来蹚下整个流程看看,在jupyter notebook上做得比较乱,但是整个流程还是可以看出来的。深度学习模型用的Keras。

先导入train_csv数据,这里用的是最初版的训练csv文件,img_path里存在地址,后面做了处理。

code

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

from glob import glob
from tqdm import tqdm

import cv2
from PIL import Image

train_path = 'visual_china_train.csv'
train_df = pd.read_csv(train_path)
train_df.head()
code
train_df.shape
#(35000, 2)

可以看到总共有35000张训练图片,第一列为图片名称(带地址,需处理),第二列为图片对应标签。

来看下是不是的确只有6941个标签:

code

tags = []
for i in range(train_df['tags'].shape[0]):
    for tag in train_df['tags'].iloc[i].split(','):
        tags.append(tag)

tags = set(tags)
len(tags)
#6941

事实证明标签总数无误,可以放心大胆地继续进行下去了。

然后我处理了下图片名称,并存到了img_paths列表里。

code

#如果使用的是官方后来更新的visual_china_train.csv,可以直接使用最后一行代码
for i in range(35000):
    train_df['img_path'].iloc[i] = train_df['img_path'].iloc[i].split('/')[-1]

img_paths = list(train_df['img_path'])

定义三个函数,其中:

  • hash_tag函数读入valid_tags.txt文件,并存入字典,形成索引和标签的对照。
  • load_ytrain函数读入tag_train.npz文件,并返回训练集的y_train,形式为ndarray,shape为(35000, 6941),即35000张图片和对应标签的one-hot编码。
  • arr2tag函数将预测结果的y_pred转变成对应的中文标签。(实际上最后还需要做下处理)

code

def hash_tag(filepath):
    fo = open(filepath, "r",encoding='utf-8')
    hash_tag = {}
    i = 0
    for line in fo.readlines():     #依次读取每行  
        line = line.strip()         #去掉每行头尾空白  
        hash_tag[i] = line
        i += 1
    return hash_tag

def load_ytrain(filepath):  
    y_train = np.load(filepath)
    y_train = y_train['tag_train']

    return y_train

def arr2tag(arr):
    tags = []
    for i in range(arr.shape[0]):
        tag = []
        index = np.where(arr[i] > 0.5)  
        index = index[0].tolist()
        tag =  [hash_tag[j] for j in index]

        tags.append(tag)
    return tags

读入valid_tags.txt,并生成索引和标签的映射。

code

filepath = "valid_tags.txt"
hash_tag = hash_tag(filepath)

hash_tag[1]
#'0到1个月'

载入y_train

code

y_train = load_ytrain('tag_train.npz')
y_train.shape
#(35000, 6941)

前期准备工作差不多做完了,开始导入训练集。此处有个坑,即原始训练集中存在CMYK格式的图片,传统图片处理一般为RGB格式,所以使用Image库中的convert函数对非RGB格式的图片进行转换。

code

nub_train = 5000  #可修改,前期尝试少量数据验证模型
X_train = np.zeros((nub_train,224,224,3),dtype=np.uint8)
i = 0

for img_path in img_paths[:nub_train]:
    img = Image.open('train/' + img_path)
    if img.mode != 'RGB':
        img = img.convert('RGB')
    img = img.resize((224,224))
    arr = np.asarray(img)
    X_train[i,:,:,:] = arr
    i += 1

训练集导入完成,来看图片的样子,判断下图片有没有读入错误之类的问题。

code

fig,axes = plt.subplots(6,6,figsize=(20, 20))

j = 0
for i,img in enumerate(X_train[:36]):
    axes[i//6,j%6].imshow(img)
    j+=1

看样子还不错,go on! 训练集的X_train、y_train都拿到了,分割出验证集。这里要说明一下,官方的y_train里图片名称与X_train里图片名称是对应的所以可以直接分割。

code

from sklearn.model_selection import train_test_split
X_train2,X_val,y_train2,y_val = train_test_split(X_train, y_train[:nub_train], test_size=0.2, random_state=2018)

数据准备完成,开始搭建模型。咳咳,先从简单的入手哈,此模型仿tinymind上一次的汉字书法识别大赛中“真的学不会”大佬的结构来搭的,又加了些自己的东西,反正简单模型试试水嘛。

code

from keras.layers import *
from keras.models import *
from keras.optimizers import *
from keras.callbacks import *

def bn_prelu(x):
    x = BatchNormalization()(x)
    x = PReLU()(x)
    return x

def build_model(out_dims, input_shape=(224, 224, 3)):
    inputs_dim = Input(input_shape)
    x = Lambda(lambda x: x / 255.0)(inputs_dim) #在模型里进行归一化预处理

    x = Conv2D(16, (3, 3), strides=(2, 2), padding='same')(x)
    x = bn_prelu(x)
    x = Conv2D(16, (3, 3), strides=(1, 1), padding='same')(x)
    x = bn_prelu(x)
    x = MaxPool2D(pool_size=(2, 2))(x)

    x = Conv2D(32, (3, 3), strides=(1, 1), padding='same')(x)
    x = bn_prelu(x)
    x = Conv2D(32, (3, 3), strides=(1, 1), padding='same')(x)
    x = bn_prelu(x)
    x = MaxPool2D(pool_size=(2, 2))(x)

    x = Conv2D(64, (3, 3), strides=(1, 1), padding='same')(x)
    x = bn_prelu(x)
    x = MaxPool2D(pool_size=(2, 2))(x)

    x = Conv2D(128, (3, 3), strides=(1, 1), padding='same')(x)
    x = bn_prelu(x)
    x = GlobalAveragePooling2D()(x)

    dp_1 = Dropout(0.5)(x)

    fc2 = Dense(out_dims)(dp_1)
    fc2 = Activation('sigmoid')(fc2) #此处注意,为sigmoid函数

    model = Model(inputs=inputs_dim, outputs=fc2)
    return model

看下模型结构:

code

model = build_model(6941)
model.summary()
_________________________________________________________________Layer (type)                 Output Shape              Param #   
=================================================================input_1 (InputLayer)         (None, 224, 224, 3)       0         
_________________________________________________________________lambda_1 (Lambda)            (None, 224, 224, 3)       0         
_________________________________________________________________conv2d_1 (Conv2D)            (None, 112, 112, 16)      448       
_________________________________________________________________batch_normalization_1 (Batch (None, 112, 112, 16)      64        
_________________________________________________________________p_re_lu_1 (PReLU)            (None, 112, 112, 16)      200704    
_________________________________________________________________conv2d_2 (Conv2D)            (None, 112, 112, 16)      2320      
_________________________________________________________________batch_normalization_2 (Batch (None, 112, 112, 16)      64        
_________________________________________________________________p_re_lu_2 (PReLU)            (None, 112, 112, 16)      200704    
_________________________________________________________________max_pooling2d_1 (MaxPooling2 (None, 56, 56, 16)        0         
_________________________________________________________________conv2d_3 (Conv2D)            (None, 56, 56, 32)        4640      
_________________________________________________________________batch_normalization_3 (Batch (None, 56, 56, 32)        128       
_________________________________________________________________p_re_lu_3 (PReLU)            (None, 56, 56, 32)        100352    
_________________________________________________________________conv2d_4 (Conv2D)            (None, 56, 56, 32)        9248      
_________________________________________________________________batch_normalization_4 (Batch (None, 56, 56, 32)        128       
_________________________________________________________________p_re_lu_4 (PReLU)            (None, 56, 56, 32)        100352    
_________________________________________________________________max_pooling2d_2 (MaxPooling2 (None, 28, 28, 32)        0         
_________________________________________________________________conv2d_5 (Conv2D)            (None, 28, 28, 64)        18496     
_________________________________________________________________batch_normalization_5 (Batch (None, 28, 28, 64)        256       
_________________________________________________________________p_re_lu_5 (PReLU)            (None, 28, 28, 64)        50176     
_________________________________________________________________max_pooling2d_3 (MaxPooling2 (None, 14, 14, 64)        0         
_________________________________________________________________conv2d_6 (Conv2D)            (None, 14, 14, 128)       73856     
_________________________________________________________________batch_normalization_6 (Batch (None, 14, 14, 128)       512       
_________________________________________________________________p_re_lu_6 (PReLU)            (None, 14, 14, 128)       25088     
_________________________________________________________________global_average_pooling2d_1 ( (None, 128)               0         
_________________________________________________________________dropout_1 (Dropout)          (None, 128)               0         
_________________________________________________________________dense_1 (Dense)              (None, 6941)              895389    
_________________________________________________________________activation_1 (Activation)    (None, 6941)              0         
=================================================================Total params: 1,682,925
Trainable params: 1,682,349
Non-trainable params: 576_________________________________________________________________

由于比赛要求里最终得分标准是fmeasure而不是acc,故网上找来一段代码用以监测训练中查准率、查全率、fmeasure的变化。原地址找不到了,故而无法贴上,罪过罪过。

code

import keras.backend as K

def precision(y_true, y_pred):
    # Calculates the precision
    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
    predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
    precision = true_positives / (predicted_positives + K.epsilon())
    return precision

def recall(y_true, y_pred):
    # Calculates the recall
    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
    possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
    recall = true_positives / (possible_positives + K.epsilon())
    return recall

def fbeta_score(y_true, y_pred, beta=1):
    # Calculates the F score, the weighted harmonic mean of precision and recall.
    if beta < 0:
        raise ValueError('The lowest choosable beta is zero (only precision).')

    # If there are no true positives, fix the F score at 0 like sklearn.
    if K.sum(K.round(K.clip(y_true, 0, 1))) == 0:
        return 0

    p = precision(y_true, y_pred)
    r = recall(y_true, y_pred)
    bb = beta ** 2
    fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon())
    return fbeta_score

def fmeasure(y_true, y_pred):
    # Calculates the f-measure, the harmonic mean of precision and recall.
    return fbeta_score(y_true, y_pred, beta=1)

这里稍做图片增强,用Keras里的ImageDataGenerator函数,同时还可生成器方法进行训练。

code

from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(width_shift_range = 0.1, 
                                 height_shift_range = 0.1, 
                                 zoom_range = 0.1)
val_datagen = ImageDataGenerator()     #验证集不做图片增强

batch_size = 8

train_generator = train_datagen.flow(X_train2,y_train2,batch_size=batch_size,shuffle=False) 
val_generator = val_datagen.flow(X_val,y_val,batch_size=batch_size,shuffle=False)

开始训练。这里在ModelCheckpoint里设置monitor监控feasure,mode为max,不再以最低loss作为模型最优的判断标准(个人做法,好坏可自行实验判断)。

code

checkpointer = ModelCheckpoint(filepath='weights_best_simple_model.hdf5', 
                            monitor='val_fmeasure',verbose=1, save_best_only=True, mode='max')
reduce = ReduceLROnPlateau(monitor='val_fmeasure',factor=0.5,patience=2,verbose=1,min_delta=1e-4,mode='max')

model.compile(optimizer = 'adam',
           loss='binary_crossentropy',
           metrics=['accuracy',fmeasure,recall,precision])

epochs = 20

history = model.fit_generator(train_generator,
       validation_data = val_generator,
       epochs=epochs,
       callbacks=[checkpointer,reduce],
       verbose=1)

训练了20个epoch,这里给出第20个epoch时的训练结果,可以看到,val_loss 0.0233,其实已经挺低了;val_acc0.9945,参考意义不大(暂时不清楚有什么参考意义~~);val_fmeasure0.17,嗯。。任重道远啊。

训练了20个epoch,这里给出第20个epoch时的训练结果,可以看到,val_loss 0.0233,其实已经挺低了;val_acc0.9945,参考意义不大(暂时不清楚有什么参考意义~~);val_fmeasure0.17,嗯。。任重道远啊。

Epoch 20/20500/500 [==============================] - 48s 96ms/step - loss: 0.0233 - acc: 0.9946 - fmeasure: 0.1699 - recall: 0.0970 - precision: 0.7108 - val_loss: 0.0233 - val_acc: 0.9946 - val_fmeasure: 0.1700 - val_recall: 0.0968 - val_precision: 0.7162
    Epoch 00020: val_fmeasure did not improve from 0.17148

以上只给出5000张图片的简单模型训练方法,但数据处理,搭建模型以及训练过程已经很清晰明了了,后面的进阶之路就凭大家各显身手了。

然后开始进行预测,导入测试集(当然是在训练集全部训练之后再进行测试集的预测)。

code

nub_test = len(glob('valid/*'))
X_test = np.zeros((nub_test,224,224,3),dtype=np.uint8)
path = []
i = 0
for img_path in tqdm(glob('valid/*')):
    img = Image.open(img_path)
    if img.mode != 'RGB':
        img = img.convert('RGB')
    img = img.resize((224,224))
    arr = np.asarray(img)
    X_test[i,:,:,:] = arr
    i += 1

100%|██████████████████████████████████████████████████████████████████████████████| 8000/8000 [02:18&lt;00:00, 57.91it/s]

预测测试集并利用arr2tag函数将结果转为中文标签,以便生成提交文件。

code

y_pred = model.predict(X_test)
y_tags = arr2tag(y_pred)

生成提交文件:

code

import os
img_name = os.listdir('valid/')
img_name[:10]
['000effcf2091ae3895074838b7e5f571186ab362.jpg',
 '0014455e5fbfd0961039fe23675debbb1a7b2308.jpg',
 '002138959ee7a14eb2860100392a384f8a85425f.jpg',
 '002414411ce17c6c7ab5d36dd3f956d0691ba495.jpg',
 '002780359fda7f09e6d1fc52d88aff90c6e8298b.jpg',
 '002ad24891ddf815bb86e4eca34415b1b44c9e4b.jpg',
 '002c284f94299bcee51733f7d6b17f3e4792d8c5.jpg',
 '002cf4b15887f32b688113a2a7a3f5786896d019.jpg',
 '003d4c12160b90fbbb2bd034ee30c251a45d9037.jpg',
 '0043ab4460cc79bfbea3db69d2a55d5f35600a37.jpg']

arr2tag函数得到的每张图片的标签是list格式,需转成str,在这里操作。经实验,windows中的方法与ubuntu中不同,后面也给出了ubuntu中本步的处理方法。

code

# windows
import pandas as pd

df = pd.DataFrame({'img_path':img_name, 'tags':y_tags})
for i in range(df['tags'].shape[0]):
    df['tags'].iloc[i] = ','.join(str(e) for e in  df['tags'].iloc[i])
df.to_csv('submit.csv',index=None)

df.head()

code

# #Ubuntu
import pandas as pd

df = pd.DataFrame({'img_path':img_name, 'tags':y_tags})
for i in range(df['tags'].shape[0]):
    df['tags'].iloc[i] = df['tags'].iloc[i][2:-2].replace('\'',"").replace('\'',"")
df.to_csv('submit.csv',index=None)

整篇到此结束,有几点要说的:

  1. 提高方法。不用说,肯定是上预训练模型,可能再进行模型融合效果会更好。官方大大说整个标签由于人工标注,可能会跟机器预测出来的有别差,毕竟看预测结果中出现的 “一个人,人,仅一个女人,仅一个青年女人,仅女人,仅成年人” ,如果由人类来标注可能不会这么啰嗦~~所以可以考虑NLP方法对标签进行一些处理(我不会)。另外网上查到了个诡异的做法,说可以把fmeasure变成损失函数去训练模型(fmeasure不可导),我想如果有办法做到应该效果不错吧。
  2. 不足之处。训练过程中监控fmeasure和监控loss的做法,看上去应该是fmeasure没错,不过自己对于这块研究不够,只能凭感觉在做,各位看官可自由发挥。
  3. 整篇文章代码只有查准率、查全率、fmeasure部分为网上摘取,其他均为原创代码(略有借鉴),其实是想说,代码可能有些地方稚嫩,还望各位大佬们海涵。
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-11-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI科技大本营 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
图片处理
图片处理(Image Processing,IP)是由腾讯云数据万象提供的丰富的图片处理服务,广泛应用于腾讯内部各产品。支持对腾讯云对象存储 COS 或第三方源的图片进行处理,提供基础处理能力(图片裁剪、转格式、缩放、打水印等)、图片瘦身能力(Guetzli 压缩、AVIF 转码压缩)、盲水印版权保护能力,同时支持先进的图像 AI 功能(图像增强、图像标签、图像评分、图像修复、商品抠图等),满足多种业务场景下的图片处理需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档