普渡大学研究者使用AI从Wi-Fi数据中预测学生的位置,可用于个性化推荐

编译:chux

出品:ATYUN订阅号

基于位置的签到能显示关于一个人的很多信息,特别是对于大学生来说。普渡大学的研究人员发表了一篇论文“Exploring Student Check-In Behavior for Improved Point-of-Interest Prediction”,描述了使用Wi-Fi访问日志来识别用户、位置和学术环境中的活动之间的相关性。

使用AI预测位置数据中的位置和朋友可能听起来有点令人担忧,但从好的方面来说,它不是那种通过眼球运动来预测人格特质的技术。

“在兴趣点(POI)任务中,目标是使用用户行为数据来模拟用户在不同位置和时间的活动,然后根据他们当前的背景进行预测(或针对相关场所的建议),”研究人员写道,“在这项工作中,我们首先分析了时空教育登记数据集,目的是使用POI预测来为学生个性化推荐,并了解提高学生保留率和满意度的行为模式。结果还可以更好地了解校园设施的使用方式以及学生之间的联系方式。”

该团队指出,在大多数之前的POI研究中,数据集主要包括来自Foursquare或Yelp等社交网络应用程序的自愿签到。因此,餐馆和娱乐热点的信息丰富,但平常的活动没有多少信息,比如到办公室,离开家,或办一些差事。此外,由于为他们做出贡献的用户经常只访问一次场地,因此他们可能会得出有偏见的结论,并且难以确定一致的模式。

研究人员选择用Wi-Fi解决问题——普渡大学的Wi-Fi。他们在论文中提出的优势是“更好的时间分辨率”,因为每个用户的Wi-Fi访问历史数据量非常大(当他们的设备无线发送或接收数据包时,参与研究的学生签到,导致最终达到376GB的日志文件)。在将这些数据与位置的场地信息配对后,论文的作者能够分析所有新生普渡大学学生在2016-2017学年的运动。

数据集中的每个条目包含四个项目:用户,兴趣点,兴趣点功能(例如,居住或娱乐)和时间跨度(在给定位置花费的时间量)。在处理之后,处理的样本包括少于100个签入和其他步骤的用户,处理后的样本有5.4亿个日志。

它揭示了一些有趣的趋势。例如,在工作日,学生们在下午12点和下午6点前往餐厅,并在晚上8点左右去健身房。可以预见的是,新生学生很快(在前2-3周内)熟悉了校园,然后坚持在固定的熟悉的范围活动。而且偏好因专业而异,计算机科学专业的学生和药剂学学生同时用餐,但后者在上午11点到下午12点之间更多地上课。计算机科学专业学生从早上到下午读书,花更多的时间在学术上,而药剂学学生稍晚会到健身房。

经过额外的处理和索引后,研究人员按照时间顺序对前80个登记记录中的一系列机器学习模型进行了训练,并保留了剩下的20%用于测试。他们提出的AI系统,即为密集的异构图形嵌入(EDHG),能够准确地预测学生访问过的前三的位置,准确率为85%到31%,前十位置的准确度为90%到71%。

接下来,当两个学生同时在同一个地方的时候,论文的作者就会放松对联谊活动的限制。他们从理论上推测它可以表示人际关系。

EDHG在这方面做得很好,它建议为每个用户列出10个潜在的朋友,表现优于基线中最先进的方法。然而,研究人员指出,针对不太活跃的用户(即签到次数较少的用户)的建议不太准确。

之后的工作时将合作数据纳入AI模型,他们希望这将显示社交互动是否会影响学生的登记行为,“这些初步结果表明,将学生轨迹信息用于教育应用中的个性化推荐,以及学生满意度的预测模型是很有希望的。”

论文:arxiv.org/pdf/1811.06912.pdf

原文发布于微信公众号 - ATYUN订阅号(atyun_com)

原文发表时间:2018-11-20

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能头条

谷歌Principal Scientist谈AI:知识表示为何重要

1974
来自专栏大数据文摘

TED演讲 | 数据滥用时代,3招教你辨别身边不靠谱数据

2384
来自专栏吉浦迅科技

NVIDIA推出人工智能引擎DRIVE PX 2 抢攻自动汽车市场

NVIDIA 于绘图卡市场称皇称霸,市场巩固,近年积极向多元化发展,除了早前涉足 VR 市场, 5 日宣布推出全球车载」 ,加速自动车驾驶进展,其采用 NVID...

3425
来自专栏CDA数据分析师

我的数据分析/数据挖掘/机器学习必读书目

总结一下我读过的机器学习/数据挖掘/数据分析方面的书,有的适合入门,有的适合进阶,没有按照层次排列,先总结一下,等总结的差不多了再根据入门--->进阶分块写。下...

2396
来自专栏CSDN技术头条

谷歌Principal Scientist谈AI:知识表示为何重要

如今人工智能(AI)的焦点与90年代时期时有很大的区别。20年前,人工智能关注的重点在于基于逻辑的AI,通常属于知识表示,即KR(Knowledge Repre...

2027
来自专栏CDA数据分析师

这16个数据可视化案例,惊艳了全球数据行业

本文转自网络,如涉侵权请及时联系我们 数据可视化可以帮你更容易的解释趋势和统计数据。 数据是非常强大的。当然,如果你能真正理解它想告诉你的内容,那它的强大之处就...

3406
来自专栏大数据文摘

儿童节 | 别只教小朋友编程,传授算法的智慧给他们同样重要

1736
来自专栏腾讯社交用户体验设计

QQ默认表情优化背后的故事 - 腾讯ISUX

1995
来自专栏量子位

Uber开源深度概率编程语言Pyro,AI实验室蛰伏一年首现身

安妮 编译整理 量子位 出品 | 公众号 QbitAI 昨天,Uber AI实验室与斯坦福研究团队共同开源了概率编程语言Pyro。Pyro是一个深度概率建模工具...

3865
来自专栏DT数据侠

Tableau冠军独家秘籍,看可视化语法如何巧妙引导思维

随着数据使用量的增长,越来越多的人通过数据来寻求专业问题的答案。数据可视化是一个沟通复杂信息的强大武器,通过可视化信息,我们的大脑能够更好地抓取和保存有效信息,...

970

扫码关注云+社区

领取腾讯云代金券