前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Influxdb中基于磁盘的倒排索引文件TSI结构解析

Influxdb中基于磁盘的倒排索引文件TSI结构解析

作者头像
扫帚的影子
发布2018-12-24 10:45:31
1.8K0
发布2018-12-24 10:45:31
举报
文章被收录于专栏:分布式系统进阶
TSI文件结构概览
  • 一个TSI文件的定义和操作在 tsdb/index/tsi1/index_file.go里实现的
  • 一个TSI文件的结尾存储了这个文件相关的meta信息,主要是其他section在文件中的offset和size,这个meta信息被称为tsi文件的IndexFileTrailer,我们看一下它的Size的定义:
代码语言:javascript
复制
IndexFileTrailerSize = IndexFileVersionSize +
        8 + 8 + // measurement block offset + size
        8 + 8 + // series id set offset + size
        8 + 8 + // tombstone series id set offset + size
        8 + 8 + // series sketch offset + size
        8 + 8 + // tombstone series sketch offset + size
        0

从上面的定义我们可以得到两点收获:

  1. 这个IndexFileTrailerSize在TSI文件结尾处有固定大小(82bytes),我们在解析TSI文件时,很容易读到并解析这个Trailer;
  2. 我们可以知道这个TSI文件都包含哪些Section, 下图是TSI文件结构 2.1 Trailer部分 2.2 series id set block 2.3 tombstone series id set block 2.4 series sketch block 2.5 tombstone series sketch block
  • 下面我们就分别来看一下各组成部分
Measurement block
  • 定义在 tsdb/index/tsi1/measurement_block.go
  • 它的结构也是由存储meta信息的Trailer部分和其他各section组成
  • 定义:....
代码语言:javascript
复制
type MeasurementBlock struct {
    data     []byte
    hashData []byte

    // Measurement sketch and tombstone sketch for cardinality estimation.
    sketchData, tSketchData []byte

    version int // block version
}

基础上是按照其在文件中的结构定义的,记录了measurement包括的tagset和series id信息;

  • 我们来看一张完整的结构图

influxdb_measurement_block_in_tsi.png

  • 一图抵千言
    1. Trailer部分是整个MeasuermentBlock的索引,存储着其他部分的offset和size
    2. Data block set部分是所有MeasurementBlockElement的集合, 2.1 measurement 基本属性,比如name等; 2.2 对应的tag set在文件中的offset和size; 2.3 包括的所有series id信息, 这个series id有两种表示方式:roaring bitmap和 数组,flag指示了用哪种表示方法
    3. hash index部分:以hash索引的方式存储了MeasurementBlockElement在文件中的offset, 可以在不用读取整体的tsi文件的前提下,快速定位对某个measurementblockElement的文件位置,然后读取并解析
    4. tombstome sketchmesurement sketch是使用HyperLogLog++算法来作基数统计用。
  • 代码里还提供了很多的序列化和反序列化,遍历等方法,这里不再累述。
Tag Block
  • 定义在 tsdb/index/tsil/tag_block.go
  • 它由 trailer,hash index,tag key block,tag value block四个部分组成
  • 我们来看一张完整的结构图

influxdb_tag_block_detail_in_tsi.png

  • 一图抵千言
    1. Trailer部分相当于这个tag block的meta 信息,主要保存其它各组成部分的offset和大小。
    2. Hash index部分,可以通过 tag key快速定位到tag key block的offsset;
    3. tag key block部分的hash indxe部分,可以通过tag value快速定位到tag value block部分, Data offset, Data size部分指向了当前tag key对应的所有的tag value block文件区域;
    4. 简言之,这就是个多级索引表,一级找一级;
  • 代码里还提供了很多的序列化和反序列化,遍历等方法,这里不再累述;
  • 我们来看一下tabblock的encode过程,我们用伪码来写一下:
代码语言:javascript
复制
//遍历每个tag key
for tagkey in tagkeys {
   每个tag key对应多个tag value,遍历
   每个tag key都生成一个tag key entry对象,记录下tag key entry的offset,然后将这个tag key entry放入数组TagKeyEntrys备用
   for tagValue in tagValuesBytagKey {
      buildTagValueBlock
      写这个tagValueBlock的offset和tag value入hash表
   }
   写入这个tag value到tagValueBlockOffset的hash表
}

 for tagkeyEntry in TagKeyEntrys {
   构建tagKeyBlock
   写这个tagKeyBlock的offset和tag key入hash表
}
写入这个tag key到tagKeyBlock Offset的hash表

简单讲就是:

  1. 构建一系列tag value block, 同时准备好TagKeyEntry组数;
  2. 根据 1 中的TabKeyEntry构建一系列tab key block, 同时准备好[tag key] -> [tag key block offset]的map;
  3. 根据 2 中的 map 建hash index。
IndexFile
  • 定义在 tsdb/index/tsil/index_file.go
代码语言:javascript
复制
type IndexFile struct {
    wg   sync.WaitGroup // ref count
    data []byte

    // Components
    sfile *tsdb.SeriesFile // 对应的Seriesile文件
    tblks map[string]*TagBlock //包含的所有TagBlock
    mblk  MeasurementBlock //MeasurementBlock

    // Raw series set data.
    seriesIDSetData          []byte
    tombstoneSeriesIDSetData []byte

    // Series sketch data.
    sketchData, tSketchData []byte

    // Sortable identifier & filepath to the log file.
    level int
    id    int

    mu sync.RWMutex
    // Compaction tracking.
    compacting bool

    // Path to data file.
    path string
}
  • 我们看一下结构图:

influxd_series_index.png

  • Trailer部分是其meta信息,里面是其他block的offset和size;
  • Trailer部分的信息可以定位到Measurement block部分;
  • Measurement block部分有hash index,根据measurement name可以快速定位到其 tab block部分
  • tag block中可以根据tag key定位到 tab key block部分;
  • tag key block部分又按hash indexd快速定位到 tag value;
IndexFiles
  • 代表了一个layer上所有的index file,定义如下:
代码语言:javascript
复制
type IndexFiles []*IndexFile
  • 提供了一系列的iterator操作,按measurement name来汇集了所有index文件中的measurement, tagkey, tagvalue, series id set等,且作了排序
代码语言:javascript
复制
func (p IndexFiles) MeasurementIterator() MeasurementIterator
func (p *IndexFiles) TagKeyIterator(name []byte) (TagKeyIterator, error)
func (p IndexFiles) MeasurementSeriesIDIterator(name []byte) tsdb.SeriesIDIterator
func (p IndexFiles) TagValueSeriesIDSet(name, key, value []byte) (*tsdb.SeriesIDSet, error) 
  • 最主要的是提供了CompactTo方法,将其包含的所有index文件合并成一个 利用上面的一系列iterator方法,依次写入tag block, measurement block等,这里不累述。
FileSet
  • 是File类型的集合,这个 File类型可能是LogFile,也可能是 IndexFile,功能是上面的IndexFiles类似,定义如下:
代码语言:javascript
复制
type FileSet struct {
    levels       []CompactionLevel
    sfile        *tsdb.SeriesFile
    files        []File // 按最后更改时间从小到大排列
    manifestSize int64 // Size of the manifest file in bytes.
}
  • 提供了一系列的iterator操作,按measurement name来汇集了所有index文件中的measurement, tagkey, tagvalue, series id set等,且作了排序
  • 文件替换操作, 参数中oldFiles是fs.files的一部分,即当前正在被compat的文件列表,这个方法的目的是将这oldFiles列表从fs.files中删除,然后在oldFiles原来开始的位置插入这个newFile, 这个newFile就是compact之后新生成的文件。
代码语言:javascript
复制
func (fs *FileSet) MustReplace(oldFiles []File, newFile File) *FileSet {
    assert(len(oldFiles) > 0, "cannot replace empty files")

    // Find index of first old file.
    var i int
    for ; i < len(fs.files); i++ {
        if fs.files[i] == oldFiles[0] {
            break
        } else if i == len(fs.files)-1 {
            panic("first replacement file not found")
        }
    }

    // Ensure all old files are contiguous.
    for j := range oldFiles {
        if fs.files[i+j] != oldFiles[j] {
            panic(fmt.Sprintf("cannot replace non-contiguous files: subset=%+v, fileset=%+v", Files(oldFiles).IDs(), Files(fs.files).IDs()))
        }
    }

    // Copy to new fileset.
    other := make([]File, len(fs.files)-len(oldFiles)+1)
    copy(other[:i], fs.files[:i])
    other[i] = newFile
    copy(other[i+1:], fs.files[i+len(oldFiles):])

    // Build new fileset and rebuild changed filters.
    return &FileSet{
        levels: fs.levels,
        files:  other,
    }
}
Partition
  • 它包含层级结构的index files和一个LogFile,其中这个层级结构的index files就是L1-l7的tsi,这个LogFile就是tsl(它算作是L0),在磁盘上的目录结构上,它位于每个shard目录下。一个partiton下包含有一个tsl文件,若干tsi文件和一个MANIFEST文件。
  1. tsl:就是WAL,前面已经介绍过,新写入的index信息除了在内存里缓存外,还会以LogEntry的形式写入这个tsl,作故障恢复时用。
  2. L0层LogFile会定期compact到L1, L1-L6会定期向高层作compact, compact的过程其实就是将相同measurement的tagbock作在一起,相同measurement的相同tagkey对应的所有tagvalue放在一起, 相同measurement的相同tagkey又相同tagvalue的不同series id作合并后放在一起。
  • 我们重点看一下compact方法:
代码语言:javascript
复制
func (p *Partition) compact() {
    if p.isClosing() {
        return
    } else if !p.compactionsEnabled() {
        return
    }
    interrupt := p.compactionInterrupt

    fs := p.retainFileSet()
    defer fs.Release()

    //influxdb的每个partition中tsi的层次是固定的L0-L7,其中L0是wal,这个方法不涉及它的compact
    //L7为最高层,它也不会再被compact了
    //所以这个compact方法需要处理的是L1-L6层
    minLevel, maxLevel := 1, len(p.levels)-2
    for level := minLevel; level <= maxLevel; level++ {
        //如果正在被compact则跳过
        if p.levelCompacting[level] {
            continue
        }

        // 获取当前level中的相邻的index文件列表,按文件更改时间由新到旧排,每次最多compact两个文件,少于两个的不作compact
        files := fs.LastContiguousIndexFilesByLevel(level)
        if len(files) < 2 {
            continue
        } else if len(files) > MaxIndexMergeCount {
            files = files[len(files)-MaxIndexMergeCount:]
        }

        // Retain files during compaction.
        IndexFiles(files).Retain()

        // Mark the level as compacting.
        p.levelCompacting[level] = true

        // 开goroutine作compact
        func(files []*IndexFile, level int) {
            // Start compacting in a separate goroutine.
            p.wg.Add(1)
            go func() {

                // compact到高一级.
                p.compactToLevel(files, level+1, interrupt)

                // Ensure compaction lock for the level is released.
                p.mu.Lock()
                p.levelCompacting[level] = false
                p.mu.Unlock()
                p.wg.Done()

                // Check for new compactions
                p.Compact()
            }()
        }(files, level)
    }
TagValueSeriesIDCache
  • series id set 在内存中的缓存,实际上就是一个LRU缓存,一般用双向链表+map实现;
  • 使用map来记录缓存内容:cache map[string]map[string]map[string]*list.Element,这是个嵌套map结构 seasurement name -> tag key -> tag value -> list.Element,最后的这个list.Element里包括seriesIDSet
代码语言:javascript
复制
type seriesIDCacheElement struct {
    name        []byte
    key         []byte
    value       []byte
    SeriesIDSet *tsdb.SeriesIDSet
}

利用这个map来加速cache的查找过程;

  • 使用golang list.List来记录所有的list.Eement对象,实现缓存的LRU淘汰机制。新加入的和刚刚Get过的element被移动到链表的头部,如果缓存大小到达上限,则直接删除链表尾部的元素,同时也要清理map中相应的元素。
完整结构图
  • 最后我们来放一张完整的tsi结构图,每个Shard都对应有这样的一个tsi结构
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018.12.23 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • TSI文件结构概览
  • Measurement block
  • Tag Block
  • IndexFile
  • IndexFiles
  • FileSet
  • Partition
    • TagValueSeriesIDCache
    • 完整结构图
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档