前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >MTCNN算法与代码理解—人脸检测和人脸对齐联合学习

MTCNN算法与代码理解—人脸检测和人脸对齐联合学习

作者头像
李拜六不开鑫
修改2020-04-26 16:38:37
2.2K0
修改2020-04-26 16:38:37
举报
文章被收录于专栏:本立2道生本立2道生

写在前面

主页https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html 论文https://arxiv.org/abs/1604.02878 代码官方matlab版C++ caffe版 第三方训练代码tensorflowmxnet

MTCNN,恰如论文标题《Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks》所言,采用级联CNN结构,通过多任务学习,同时完成了两个任务——人脸检测和人脸对齐,输出人脸的Bounding Box以及人脸的关键点(眼睛、鼻子、嘴)位置

MTCNN 又好又快,提出时在FDDBWIDER FACEAFLW数据集上取得了当时(2016年4月)最好的结果,速度又快,现在仍被广泛使用作为人脸识别的前端,如InsightFacefacenet

MTCNN效果为什么好,文中提了3个主要的原因:

  1. 精心设计的级联CNN架构(carefully designed cascaded CNNs architecture)
  2. 在线困难样本挖掘(online hard sample mining strategy)
  3. 人脸对齐联合学习(joint face alignment learning)

下面详细介绍。

算法Pipeline详解

总体而言,MTCNN方法可以概括为:图像金字塔+3阶段级联CNN,如下图所示

MTCNN Pipeline
MTCNN Pipeline

对输入图像建立金字塔是为了检测不同尺度的人脸,通过级联CNN完成对人脸 由粗到细(coarse-to-fine) 的检测,所谓级联指的是 前者的输出是后者的输入,前者往往先使用少量信息做个大致的判断,快速将不是人脸的区域剔除,剩下可能包含人脸的区域交给后面更复杂的网络,利用更多信息进一步筛选,这种由粗到细的方式在保证召回率的情况下可以大大提高筛选效率。下面为MTCNN中级联的3个网络(P-Net、R-Net、O-Net),可以看到它们的网络层数逐渐加深输入图像的尺寸(感受野)在逐渐变大12→24→48最终输出的特征维数也在增加32→128→256,意味着利用的信息越来越多。

the architectures of P-Net, R-Net, and O-Net
the architectures of P-Net, R-Net, and O-Net

工作流程是怎样的? 首先,对原图通过双线性插值构建图像金字塔,可以参看前面的博文《人脸检测中,如何构建输入图像金字塔》。构建好金字塔后,将金字塔中的图像逐个输入给P-Net。

  • P-Net:其实是个全卷积神经网络(FCN),前向传播得到的特征图在每个位置是个32维的特征向量,用于判断每个位置处约12×12大小的区域内是否包含人脸,如果包含人脸,则回归出人脸的Bounding Box,进一步获得Bounding Box对应到原图中的区域,通过NMS保留分数最高的Bounding box以及移除重叠区域过大的Bounding Box。
  • O-Net:是单纯的卷积神经网络(CNN),先将P-Net认为可能包含人脸的Bounding Box 双线性插值到24×24,输入给O-Net,判断是否包含人脸,如果包含人脸,也回归出Bounding Box,同样经过NMS过滤。
  • R-Net:也是纯粹的卷积神经网络(CNN),将O-Net认为可能包含人脸的Bounding Box 双线性插值到48×48,输入给R-Net,进行人脸检测和关键点提取。

需要注意的是:

  1. face classification判断是不是人脸使用的是softmax,因此输出是2维的,一个代表是人脸,一个代表不是人脸
  2. bounding box regression回归出的是bounding box左上角和右下角的偏移dx1,dy1,dx2,dy2,因此是4维的
  3. facial landmark localization回归出的是左眼、右眼、鼻子、左嘴角、右嘴角共5个点的位置,因此是10维的
  4. 训练阶段,3个网络都会将关键点位置作为监督信号来引导网络的学习, 但在预测阶段,P-Net和R-Net仅做人脸检测,不输出关键点位置(因为这时人脸检测都是不准的),关键点位置仅在O-Net中输出。
  5. Bounding box关键点输出均为归一化后的相对坐标,Bounding Box是相对待检测区域(R-Net和O-Net是相对输入图像),归一化是相对坐标除以检测区域的宽高,关键点坐标是相对Bounding box的坐标,归一化是相对坐标除以Bounding box的宽高,这里先建立起初步的印象,具体可以参看后面准备训练数据部分和预测部分的代码细节。

MTCNN效果好的第1个原因是精心设计的级联CNN架构,其实,级联的思想早已有之,而使用级联CNN进行人脸检测的方法是在2015 CVPR《A convolutional neural network cascade for face detection》中被率先提出,MTCNN与之的差异在于:

  • 减少卷积核数量(层内)
  • 将5×5的卷积核替换为3×3
  • 增加网络深度

这样使网络的表达能力更强,同时运行时间更少。

MTCNN效果好的后面2个原因在线困难样本挖掘人脸对齐联合学习将在下一节介绍。

如何训练

损失函数

MTCNN的多任务学习有3个任务,1个分类2个回归,分别为face classification、bounding box regression以及facial landmark localization,分类的损失函数使用交叉熵损失,回归的损失函数使用欧氏距离损失,如下:

MTCNN loss function
MTCNN loss function
Ft9d1O.png
Ft9d1O.png

训练数据准备

MTCNN准备了4种训练数据:

  1. Negatives:与ground-truth faces的IOU < 0.3的图像区域,lable = 0
  2. Positives:与ground-truth faces的IOU≥ 0.65的图像区域,lable = 1
  3. Part faces:与ground-truth faces的0.4 ≤le IOU < 0.65的图像区域,lable = -1
  4. Landmark faces:标记了5个关键点的人脸图像,lable = -2

这4种数据是如何组织的呢?以MTCNN-Tensorflow为例:

Since MTCNN is a Multi-task Network,we should pay attention to the format of training data.The format is: [path to image] [cls_label] [bbox_label] [landmark_label] For neg sample, cls_label=0, bbox_label=[0,0,0,0], landmark_label=[0,0,0,0,0,0,0,0,0,0]. For pos sample, cls_label=1, bbox_label(calculate), landmark_label=[0,0,0,0,0,0,0,0,0,0]. For part sample, cls_label=-1, bbox_label(calculate), landmark_label=[0,0,0,0,0,0,0,0,0,0]. For landmark sample, cls_label=-2, bbox_label=[0,0,0,0], landmark_label(calculate).

数量之比依次为\(3:1:1:2\),其中,Negatives、Positives和Part faces通过WIDER FACE数据集crop得到,landmark faces通过CelebA数据集crop得到,先crop区域,然后看这个区域与哪个ground-truth face的IOU最大,根据最大IOU来生成label,比如小于0.3的标记为negative。

P-Net训练数据的准备可以参见gen_12net_data.py、gen_landmark_aug_12.py、gen_imglist_pnet.py和gen_PNet_tfrecords.py,代码很直观,这里略过crop过程,重点介绍bounding box label和landmark label的生成。下面是gen_12net_data.py和gen_landmark_aug_12.py中的代码片段,bounding box 和 landmark 的label为归一化后的相对坐标offset_x1, offset_y1, offset_x2, offset_y2为bounding box的label,使用crop区域的size进行归一化rv为landmark的label,使用bbox的宽高进行归一化,注意两者的归一化是不一样的,具体见代码:

代码语言:javascript
复制
## in gen_12net_data.py
# pos and part face size [minsize*0.8,maxsize*1.25]
size = npr.randint(int(min(w, h) * 0.8), np.ceil(1.25 * max(w, h)))

# delta here is the offset of box center
if w<5:
    print (w)
    continue
#print (box)
delta_x = npr.randint(-w * 0.2, w * 0.2)
delta_y = npr.randint(-h * 0.2, h * 0.2)

#show this way: nx1 = max(x1+w/2-size/2+delta_x)
# x1+ w/2 is the central point, then add offset , then deduct size/2
# deduct size/2 to make sure that the right bottom corner will be out of
nx1 = int(max(x1 + w / 2 + delta_x - size / 2, 0))
#show this way: ny1 = max(y1+h/2-size/2+delta_y)
ny1 = int(max(y1 + h / 2 + delta_y - size / 2, 0))
nx2 = nx1 + size
ny2 = ny1 + size

if nx2 > width or ny2 > height:
    continue 
crop_box = np.array([nx1, ny1, nx2, ny2])
#yu gt de offset
##### x1 y1 x2 y2 为 ground truth bbox, nx1 ny1 nx2 ny2为crop的区域,size为crop的区域size ######
offset_x1 = (x1 - nx1) / float(size) 
offset_y1 = (y1 - ny1) / float(size)
offset_x2 = (x2 - nx2) / float(size)
offset_y2 = (y2 - ny2) / float(size)
#crop
cropped_im = img[ny1 : ny2, nx1 : nx2, :]
#resize
resized_im = cv2.resize(cropped_im, (12, 12), interpolation=cv2.INTER_LINEAR)
##########################################################################

## in gen_landmark_aug_12.py
#normalize land mark by dividing the width and height of the ground truth bounding box
# landmakrGt is a list of tuples
for index, one in enumerate(landmarkGt):
    # (( x - bbox.left)/ width of bounding box, (y - bbox.top)/ height of bounding box
    rv = ((one[0]-gt_box[0])/(gt_box[2]-gt_box[0]), (one[1]-gt_box[1])/(gt_box[3]-gt_box[1]))
    # put the normalized value into the new list landmark
    landmark[index] = rv

需要注意的是,对于P-Net,其为FCN,预测阶段输入图像可以为任意大小,但在训练阶段,使用的训练数据均被resize到12×12,以便于控制正负样本的比例(避免数据不平衡)。

因为是级联结构训练要分阶段依次进行,训练好P-Net后,用P-Net产生的候选区域来训练R-Net,训练好R-Net后,再生成训练数据来训练O-Net。P-Net训练好之后,根据其结果准备R-Net的训练数据,R-Net训练好之后,再准备O-Net的训练数据,过程是类似的,具体可以参见相关代码,这里就不赘述了。

多任务学习与在线困难样本挖掘

4种训练数据参与的训练任务如下:

  • Negatives和Positives用于训练face classification
  • Positives和Part faces用于训练bounding box regression
  • landmark faces用于训练facial landmark localization

至于在线困难样本挖掘,仅在训练face/non-face classification时使用,具体做法是:对每个mini-batch的数据先通过前向传播,挑选损失最大的前70%作为困难样本,在反向传播时仅使用这70%困难样本产生的损失。文中的实验表明,这样做在FDDB数据级上可以带来1.5个点的性能提升。

具体怎么实现的?这里以MTCNN-Tensorflow / train_models / mtcnn_model.py代码为例,用label来指示是哪种数据,下面为代码,重点关注valid_indslosssquare_error)的计算(对应\(\beta_i^j\)),以及cls_ohem中的困难样本挖掘

代码语言:javascript
复制
# in mtcnn_model.py]
# pos=1, neg=0, part=-1, landmark=-2
# 通过cls_ohem, bbox_ohem, landmark_ohem来计算损失
num_keep_radio = 0.7 # mini-batch前70%做为困难样本

# face/non-face 损失,注意在线困难样本挖掘(前70%)
def cls_ohem(cls_prob, label):
    zeros = tf.zeros_like(label)
    #label=-1 --> label=0net_factory

    #pos -> 1, neg -> 0, others -> 0
    label_filter_invalid = tf.where(tf.less(label,0), zeros, label)
    num_cls_prob = tf.size(cls_prob)
    cls_prob_reshape = tf.reshape(cls_prob,[num_cls_prob,-1])
    label_int = tf.cast(label_filter_invalid,tf.int32)
    # get the number of rows of class_prob
    num_row = tf.to_int32(cls_prob.get_shape()[0])
    #row = [0,2,4.....]
    row = tf.range(num_row)*2
    indices_ = row + label_int
    label_prob = tf.squeeze(tf.gather(cls_prob_reshape, indices_))
    loss = -tf.log(label_prob+1e-10)
    zeros = tf.zeros_like(label_prob, dtype=tf.float32)
    ones = tf.ones_like(label_prob,dtype=tf.float32)
    # set pos and neg to be 1, rest to be 0
    valid_inds = tf.where(label < zeros,zeros,ones)
    # get the number of POS and NEG examples
    num_valid = tf.reduce_sum(valid_inds)

    ###### 困难样本数量 #####
    keep_num = tf.cast(num_valid*num_keep_radio,dtype=tf.int32)
    #FILTER OUT PART AND LANDMARK DATA
    loss = loss * valid_inds
    loss,_ = tf.nn.top_k(loss, k=keep_num) ##### 仅取困难样本反向传播 #####
    return tf.reduce_mean(loss)

# bounding box损失
#label=1 or label=-1 then do regression
def bbox_ohem(bbox_pred,bbox_target,label):
    '''

    :param bbox_pred:
    :param bbox_target:
    :param label: class label
    :return: mean euclidean loss for all the pos and part examples
    '''
    zeros_index = tf.zeros_like(label, dtype=tf.float32)
    ones_index = tf.ones_like(label,dtype=tf.float32)
    # keep pos and part examples
    valid_inds = tf.where(tf.equal(tf.abs(label), 1),ones_index,zeros_index)
    #(batch,)
    #calculate square sum
    square_error = tf.square(bbox_pred-bbox_target)
    square_error = tf.reduce_sum(square_error,axis=1)
    #keep_num scalar
    num_valid = tf.reduce_sum(valid_inds)
    #keep_num = tf.cast(num_valid*num_keep_radio,dtype=tf.int32)
    # count the number of pos and part examples
    keep_num = tf.cast(num_valid, dtype=tf.int32)
    #keep valid index square_error
    square_error = square_error*valid_inds
    # keep top k examples, k equals to the number of positive examples
    _, k_index = tf.nn.top_k(square_error, k=keep_num)
    square_error = tf.gather(square_error, k_index)

    return tf.reduce_mean(square_error)

# 关键点损失
def landmark_ohem(landmark_pred,landmark_target,label):
    '''
    :param landmark_pred:
    :param landmark_target:
    :param label:
    :return: mean euclidean loss
    '''
    #keep label =-2  then do landmark detection
    ones = tf.ones_like(label,dtype=tf.float32)
    zeros = tf.zeros_like(label,dtype=tf.float32)
    valid_inds = tf.where(tf.equal(label,-2),ones,zeros) ##### 将label=-2的置为1,其余为0 #####
    square_error = tf.square(landmark_pred-landmark_target)
    square_error = tf.reduce_sum(square_error,axis=1)
    num_valid = tf.reduce_sum(valid_inds)
    #keep_num = tf.cast(num_valid*num_keep_radio,dtype=tf.int32)
    keep_num = tf.cast(num_valid, dtype=tf.int32)
    square_error = square_error*valid_inds # 在计算landmark_ohem损失时只计算beta=1的 #####
    _, k_index = tf.nn.top_k(square_error, k=keep_num)
    square_error = tf.gather(square_error, k_index)
    return tf.reduce_mean(square_error)

多任务学习的代码片段如下:

代码语言:javascript
复制
# in train.py
if net == 'PNet':
    image_size = 12
    radio_cls_loss = 1.0;radio_bbox_loss = 0.5;radio_landmark_loss = 0.5;
elif net == 'RNet':
    image_size = 24
    radio_cls_loss = 1.0;radio_bbox_loss = 0.5;radio_landmark_loss = 0.5;
else:
    radio_cls_loss = 1.0;radio_bbox_loss = 0.5;radio_landmark_loss = 1;
    image_size = 48

# ...
# 多任务联合损失
total_loss_op  = radio_cls_loss*cls_loss_op + radio_bbox_loss*bbox_loss_op + radio_landmark_loss*landmark_loss_op + L2_loss_op
train_op, lr_op = train_model(base_lr, total_loss_op, num)

def train_model(base_lr, loss, data_num):
    """
    train model
    :param base_lr: base learning rate
    :param loss: loss
    :param data_num:
    :return:
    train_op, lr_op
    """
    lr_factor = 0.1
    global_step = tf.Variable(0, trainable=False)
    #LR_EPOCH [8,14]
    #boundaried [num_batch,num_batch]
    boundaries = [int(epoch * data_num / config.BATCH_SIZE) for epoch in config.LR_EPOCH]
    #lr_values[0.01,0.001,0.0001,0.00001]
    lr_values = [base_lr * (lr_factor ** x) for x in range(0, len(config.LR_EPOCH) + 1)]
    #control learning rate
    lr_op = tf.train.piecewise_constant(global_step, boundaries, lr_values)
    optimizer = tf.train.MomentumOptimizer(lr_op, 0.9)
    train_op = optimizer.minimize(loss, global_step)
    return train_op, lr_op

以上对应论文中的损失函数。

预测过程

MTCNN generateBoundingBox
MTCNN generateBoundingBox

而每个位置处都有个4维的向量,其为bounding box左上角和右下角的偏移dx1, dy1, dx2, dy2,通过上面的训练过程,我们知道它们是归一化之后的相对坐标,通过对应的区域以及归一化后的相对坐标就可以获得原图上的bounding box,如下所示,dx1, dy1, dx2, dy2为归一化的相对坐标,求到原图中的bounding box坐标的过程为生成训练数据bounding box label的逆过程。

FNPOqe.png
FNPOqe.png

landmark位置通过O-Net输出得到,将人脸候选框resize到48×48输入给O-Net,先获得bounding box(同上),因为O-Net输出的landmark也是归一化后的相对坐标,通过bounding box的长宽和bounding box左上角求取landmark 在原图中的位置,如下所示:

FNFdts.png
FNFdts.png

至此,预测过程中的要点也介绍完毕了,以上。

参考

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018-12-13 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 写在前面
  • 算法Pipeline详解
  • 如何训练
    • 损失函数
      • 训练数据准备
        • 多任务学习与在线困难样本挖掘
        • 预测过程
        • 参考
        相关产品与服务
        人脸识别
        腾讯云神图·人脸识别(Face Recognition)基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务。 可应用于在线娱乐、在线身份认证等多种应用场景,充分满足各行业客户的人脸属性识别及用户身份确认等需求。
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档