专栏首页量子位Hinton最新专访:别让AI解释自己,AI寒冬不会再来

Hinton最新专访:别让AI解释自己,AI寒冬不会再来

允中 编译整理 量子位 出品 | 公众号 QbitAI

今天,《连线》发表了一篇专访Geoffrey Hinton的长文。

在这次加拿大G7人工智能会议上的访谈里,Hinton谈到了对谷歌军方合同的“私下”抗议,还提出了对现在AI研究的一些看法,比如:

不要让AI解释自己,那简直是个灾难。人类大多数时候都没法解释自己。

发展AI需要新型的计算硬件(他指的并不是TPU)。

我们在研究中应该追求“新想法”,不能一味看效果。从长远来看,一个全新的想法比一个微小的改进更有影响力。

另外,Hinton还说:不,不会再有AI寒冬了。

以下是采访实录:

Wired:加拿大总理特鲁多在G7大会上说,人工智能带来了一些道德挑战,对此需要做更多工作,你怎么想?

Hinton:我一直很担心致命自主武器的滥用。我认为,应该有一个类似于日内瓦公约的东西,像禁止化学武器一样禁止它们。就算不是每个国家都签署这个公约,实际上它也会起到像道德旗帜一样的作用。谁没签你是能看到的。

Wired:有一封抗议Google为国防部提供无人机图像识别服务的公开信,有4500名你的同事签了名。你签了吗?

Hinton:作为一名Google高管,我认为我不应该公开表达对公司的不满,所以,我私下表达。我没有签公开信,而是找(Google联合创始人)谢尔盖·布林谈了谈。他说他对这个事情也不满,所以,这不是他们的追求。

Wired:Google决定履行完这份合同,但是不会续签,还发布了一份AI指导方针,其中就包含了不能把这项技术用于武器。

Hinton:我认为Google的选择是正确的。各种各样的东西都需要云计算,想弄清底线设在哪确实很难。我对Google设置的底线很满意,那些原则我认为很有道理。

Wired:在日常场景里,比如在社会服务、医疗等领域用软件做决策的时候,人工智能也会带来道德问题。我们应该当心什么?

Hinton:我的专业领域是让这个技术管用,不是社会政策。这里面确实有一点和我的专业技能相关,就是判断监管者该不该坚持要求你能解释AI系统的工作原理。我认为那完全是个灾难。

在大多数事情上,人类都不能解释自己的原理。你招人的时候,是基于那些可以量化的东西来做判断,再加上各种”直觉”。人们根本不知道自己是怎么做到的。如果你让人类对自己的决定做出解释,就相当于逼他们编故事。

神经网络的问题也一样。你训练了一个神经网络,它学习的是几十亿数字,代表着从训练数据中提取的知识,输入一张图片,它给出正确的决定,比如说这是不是一个行人。但如果你要问“它为什么这么想”……如果图片里有没有行人能通过任何简单的规则来判断的话,这个问题早就解决了。

Wired:所以,我们怎么会知道什么时候能信任这些系统?

Hinton:应该根据表现来管理它们。你可以用实验来检验有没有偏见。对于无人车,我认为人们现在已经算接受了,就算不知道一辆无人车怎么做到的,如果它发生的事故比人类司机少,那就是好事。我认为我们要像对人一样来对待这个问题:看他们表现如何。

https://arxiv.org/abs/1807.04587

Wired:在你上周发表的一篇论文中,提及应该进一步研究大脑中的学习算法。这是为什么?

Hinton:大脑和现在大多数神经网络都不一样。人类大脑有大约100万亿个突触,而人工神经网络的权重通常要小1万倍。大脑使用大量的突触,从很少的样本中尽可能多的学习。而深度学习则是利用更少的神经元连接,从大量的样本中进行学习。

我认为大脑并不关注如何把大量知识压缩成几个突触的连接,而是关注如何使用大量的连接,快速的提取知识。

Wired:那应该如何构建更强大的机器学习系统?

Hinton:我们需要转向另一种计算机。幸运的是,我这里就有一个。

(Hinton说罢把手伸到包里,掏出一块耀眼的大芯片。这个芯片是英国初创公司Graphcore的原型产品,这家公司致力于为机器/深度学习算法开发新型处理器。)

漂亮得不像实力派

大多数用来运行神经网络的计算机,甚至包括Google的专用硬件,都得使用RAM(来存储正在使用的程序)。从RAM中获取神经网络的权重代价高昂,所以一旦软件获得了权重,就会反复使用很多次。想要改变是一个成本巨大的事情。

而在Graphcore芯片上,权重存储在处理器的缓存而不是RAM中,所以不会被移走。因此某些探索会变得更容易。 比如我们可以搞个一万亿个权重的系统,但是每次训练只涉及数十亿的权重。这种方式更接近大脑。

Wired:AI和机器学习的快速增长,是否也带来了新的挑战?

Hinton:现在一个巨大的挑战是,如果你想发表一篇机器学习论文,有一些条条框框的限制。如果你用的方法,看起来效果没那么好,那就很难发表。我不认为这能鼓励人们去思考全新的方法。

现在如果你发送了一个有着全新想法的论文,被接收的可能性非常低,或者会有一些无法理解你想法的初级同行在评审,或者一些看了太多论文的资深评审者,他们都不理解你的论文,并且认为是无稽之谈。我认为这非常糟糕。

我们应该追求的,特别是在基础科学会议上,是一些全新的想法。从长远来看,一个全新的想法比一个微小的改进更有影响力。出现这个问题的原因,就是资深人士太少,而年轻人太多。

Wired:这会破坏AI领域的进展么?

Hinton:用不了几年,问题就会自行解决。困难都是暂时的。大公司、大学都已经开始培育更多的人才,大学最终也会聘请更多的教授。

Wired:一些学者警告说,目前的AI热潮还会再次进入寒冬。

Hinton:不,不会再有AI寒冬了。现在AI都已经在你的手机里了。当年经历AI寒冬时,人工智能还不是人们日常生活的一部分。而现在AI已经是了。

本文分享自微信公众号 - 量子位(QbitAI)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-12-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • Hinton:人类就是机器,绝妙的机器

    原文《Mr.Robot》刊载于 Toronto Life 作者 KATRINA ONSTAD 摄影 DANIEL EHRENWORTH 编译 夏乙 唐旭 量子位...

    量子位
  • 举个卡戴珊的例子,讲讲Hinton的Capsule是怎么回事 | 教程+代码

    Nick Bourdakos 文 李林 若朴 编译自 HackerNoon 量子位 出品 | 公众号 QbitAI ? Capsule Networks,或者说...

    量子位
  • Hinton号召AI革命:重头再来;李飞飞等赞成:深度学习不是唯一

    李林 允中 编译整理 量子位 出品 | 公众号 QbitAI ? △ Hinton等合写的反向传播论文 1986年,39岁的Geoffrey Hinton与人合...

    量子位
  • AI教父Hinton:AI 系统将走向无监督,我们需要真正理解大脑

    最新一届图灵奖得主、多伦多大学教授兼谷歌大脑高级研究员 Geoffrey Hinton 今天在谷歌 I/O 开发者大会的炉边聊天上发表了演讲。

    新智元
  • Hinton:我并不认为会有AI寒冬

    20世纪70年代初,来自英国的研究生Geoffrey Hinton开始构建简单的数学模型,来描述人脑神经元如何在视觉上理解世界。几十年来,人工神经网络一直被认为...

    昱良
  • 回顾2017,AI “教父” 这么说

    2017年AI界是百家争鸣,在全球掀起了一波巨潮,工业机器人、语言翻译、自动驾驶、机器人诊断等呈现出过程式的飞跃进展。 不过,在AI“教父”Geoffery H...

    企鹅号小编
  • 举个卡戴珊的例子,讲讲Hinton的Capsule是怎么回事 | 教程+代码

    Nick Bourdakos 文 李林 若朴 编译自 HackerNoon 量子位 出品 | 公众号 QbitAI ? Capsule Networks,或者说...

    量子位
  • 别那么想,“区块链”不是寻找问题的解决方案

    比特币使用区块链技术,对吧?是的,它确实。当然,你还记得2015年的言论:“我不确定比特币是否有意义,但我对它背后的底层技术——区块链感兴趣” ——曾经在某个网...

    Bon
  • Model验证系统运行机制是如何实现的?

    在前面三篇文章(《ModelValidator》、《ModelValidatorProvider》和《ModelValidatorProviders》)中我们详...

    蒋金楠
  • 学会Mysql第一天

    1.[库选项] 数据库的相关属性 字符集: charset 字符集 校对集: collate 校对集

    白胡杨同学

扫码关注云+社区

领取腾讯云代金券